Advertisement

Influence of fullerene-based acceptor materials on the performance of indacenodithiophene-cored small molecule bulk heterojunction organic solar cells

  • Qingduan Li
  • Xin Liu
  • Jizhao Zou
  • Dongcheng Chen
  • Shi-Jian Su
  • Xierong Zeng
Article
  • 295 Downloads

Abstract

A model system is presented to investigate the influence of fullerene-based acceptor materials on the performance of small molecule organic solar cells (SM-OSCs). Two indacenodithiophene-(IDT)-cored small molecules and one diketopyrrolopyrrole-(DPP)-cored molecule are used as donor materials, and two most widely applicable fullerene-based acceptors, [6,6]-phenyl-C61(71)-butyric acid methyl esters (PC61(71)BM) are used as the acceptor material, respectively. The charge generation, transport, and recombination behaviors were studied under various irradiation intensities, and these parameters are relevant to device performance. The transient photocurrent and transient photovoltage operation are utilized to directly compare the photo-induced absorption, charge generation, and charge recombination properties of the corresponding blend films. Our results indicate that different fullerene derivatives not only affect the device performance with their different light absorption abilities but also have roles in charge generation and charge recombination, which greatly helps to understand how to select a better fullerene-based acceptor for the high-performance SM-OSCs.

Keywords

Charge Recombination Charge Generation Dark Current Density Space Charge Limited Current Acceptor Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the Natural Science Foundation of China (Nos. 51202150 and 51272161), Program of Introducing Innovative Research Team in Dongguan (No. 2014607109), Supported by the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201110).

References

  1. 1.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789–1791 (1995)CrossRefGoogle Scholar
  2. 2.
    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864–868 (2005)CrossRefGoogle Scholar
  3. 3.
    W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 15, 1617–1622 (2005)CrossRefGoogle Scholar
  4. 4.
    G. Li, R. Zhu, Y. Yang, Nat. Photon. 6, 153–161 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Shang, H. Fan, Y. Liu, W. Hu, Y. Li, X. Zhan, Adv. Mater. 23, 1554–1557Google Scholar
  6. 6.
    S. Loser, C.J. Bruns, H. Miyauchi, R.P. Ortiz, A. Facchetti, S.I. Stupp, T.J. Marks, J. Am. Chem. Soc. 133, 8142–8145Google Scholar
  7. 7.
    D. Chen, H. Zhou, M. Liu, W.M. Zhao, S.J. Su, Y. Cao, Macromol. Rapid. Commun. 34, 595–603 (2013)CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M.Z. Li, Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T.P. Russell, S.Y. Chen, Nat. Photon. 9, 35–41 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Gao, L.S. Li, T.Q. Lai, L.G. Xiao, Y. Huang, F. Huang, Y. Cao, F. Liu, T.P. Russell, R.A. Janssen, J. Am. Chem. Soc. 137, 7282–7285 (2015)CrossRefGoogle Scholar
  10. 10.
    G. Dennler, M.C. Scharber, C.J. Brabec, Adv. Mater. 21, 1323–1338 (2009)CrossRefGoogle Scholar
  11. 11.
    J.E. Anthony, Small-molecule. Chem. Mater. 23, 583–590 (2011)CrossRefGoogle Scholar
  12. 12.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)CrossRefGoogle Scholar
  13. 13.
    C.R. McNeill, N.C. Greenham, Adv. Mater. 21, 3840–3850 (2009)CrossRefGoogle Scholar
  14. 14.
    P. Sonar, J.P. Fong Lim, K.L. Chan, Energy Environ. Sci. 4, 1558–1574 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Sun, D. Meng, Y.H. Cai, B.B. Fan, Y. Li, W. Jiang, L.J. Huo, Y.M. Sun, Z.H. Wang, J. Am. Chem. Soc. 34, 11156–11162 (2015)CrossRefGoogle Scholar
  16. 16.
    W.C. Zhao, D.P. Qian, S.Q. Zhang, S.S. Li, O. Inganäs, F. Gao, J.H. Hou, Adv. Mater. 15, 4734–4739 (2016)CrossRefGoogle Scholar
  17. 17.
    M.M. Li, Y.T. Liu, W. Ni, F. Liu, H.R. Feng, Y.M. Zhang, T.T. Liu, H.T. Zhang, X.J. Wan, B. Kan, Q. Zhang, P.T. Russell, Y.S. Chen, J. Mater. Chem. A 4, 10409–10413 (2016)CrossRefGoogle Scholar
  18. 18.
    H.M. Qin, L.S. Li, F.Q. Guo, S.J. Su, J.B. Peng, Y. Cao, X.B. Peng, Energy Environ. Sci. 7, 1397–1401 (2014)CrossRefGoogle Scholar
  19. 19.
    L.S. Li, Y.Y. Huang, J.B. Peng, Y. Cao, X.B. Peng, J. Mater. Chem. A 1, 2144–2150 (2013)CrossRefGoogle Scholar
  20. 20.
    Z. Li, G.R. He, X.J. Wan, Y.S. Liu, J.Y. Zhou, G.K. Long, Y. Zuo, M.T. Zhang, Y.S. Chen, Adv. Energy Mater. 2, 74–77 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, J. Zou, H. Yip, K. Chen, D.F. Zeigler, Y. Sun, A.K. Jen, Chem. Mater. 23, 2289–2291Google Scholar
  22. 22.
    X. Liu, Q. Li, Y. Li, X. Gong, S. Su, Y. Cao, J. Mater. Chem. A 2, 4004–4013 (2014)CrossRefGoogle Scholar
  23. 23.
    X.J. Wang, F. Chen, J. Mater. Sci. Mater. Electron. 26, 1125–1128 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, J. You, Y. Yang, Y. Chen, Adv. Energy Mater. 1, 771–775 (2011)CrossRefGoogle Scholar
  25. 25.
    B. Walker, A.B. Tamayo, X. Dang, P. Zalar, J.H. Seo, A. Garcia et al., Adv. Funct. Mater. 19, 3063–3069 (2009)CrossRefGoogle Scholar
  26. 26.
    F. Huang, H.B. Wu, D. Wang, W. Yang, Y. Cao, Chem. Mater. 16, 708–716 (2004)CrossRefGoogle Scholar
  27. 27.
    Y. He, G. Zhao, B. Peng, Y. Li, Adv. Funct. Mater. 20, 3383–3389 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Sun, C.J. Takacs, S.R. Cowan, J.H. Seo, X. Gong, A. Roy et al., Adv. Mater. 23, 2226–2230 (2011)CrossRefGoogle Scholar
  29. 29.
    B. Walker, A. Tamayo, D.T. Duong, X. Dang, C. Kim, J. Granstrom et al., Adv. Energy Mater. 1, 221–229 (2011)CrossRefGoogle Scholar
  30. 30.
    X. Dang, A.B. Tamayo, J. Seo, C.V. Hoven, B. Walker, T. Nguyen, Adv. Funct. Mater. 20, 3314–3321 (2010)CrossRefGoogle Scholar
  31. 31.
    S.R. Cowan, R.A. Street, S. Cho, A.J. Heeger, Phys. Rev. B 83, 035205 (2011)CrossRefGoogle Scholar
  32. 32.
    V.D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, J.C. Hummelen, R.A.J. Janssen, J.M. Kroon et al., Adv. Funct. Mater. 13, 43–46 (2003)CrossRefGoogle Scholar
  33. 33.
    I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, J. Hummelen, Adv. Funct. Mater. 14, 38–44 (2004)CrossRefGoogle Scholar
  34. 34.
    P. Schilinsky, C. Waldauf, C.J. Brabec, Appl. Phys. Lett. 81, 3885–3887 (2002)CrossRefGoogle Scholar
  35. 35.
    J. van Duren, X. Yang, J. Loos, C. Bulle-Lieuwma, A. Sieval, J. Hummelen et al., Adv. Funct. Mater. 14, 425–434 (2004)CrossRefGoogle Scholar
  36. 36.
    S.R. Cowan, A. Roy, A.J. Heeger, Phys. Rev. B 82, 245207 (2010)CrossRefGoogle Scholar
  37. 37.
    L.J.A. Koster, V.D. Mihailetchi, R. Ramaker, P.W.M. Blom, Appl. Phys. Lett. 86, 123509 (2005)CrossRefGoogle Scholar
  38. 38.
    W. Shockley, W.T. Read Jr, Phys. Rev. 87, 835–842 (1952)CrossRefGoogle Scholar
  39. 39.
    R.N. Hall, Phys. Rev. 87, 387–387 (1952)CrossRefGoogle Scholar
  40. 40.
    M. Mandoc, W. Veurman, L. Koster, B. de Boer, P. Blom, Adv. Funct. Mater. 17, 2167–2173 (2007)CrossRefGoogle Scholar
  41. 41.
    Q.D. Li, F. Liu, X.W. Hu, W.Z. Xu, L.P. Wang, et al., IEEE J. Photovolt. 5, 118–1124 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qingduan Li
    • 1
    • 2
  • Xin Liu
    • 3
  • Jizhao Zou
    • 1
  • Dongcheng Chen
    • 3
  • Shi-Jian Su
    • 3
  • Xierong Zeng
    • 1
    • 4
  1. 1.Shenzhen Key Laboratory of Special Functional Materials and Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  2. 2.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  3. 3.State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouPeople’s Republic of China
  4. 4.JANUS (Dongguan) Precision Components Co., LtdDongguanPeople’s Republic of China

Personalised recommendations