Skip to main content
Log in

Synthesis, characterization, magnetic and catalytic properties of graphene oxide/Fe3O4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, graphene oxide/Fe3O4 (GO/Fe3O4) nanocomposites were prepared by using co-precipitation method at low temperature. The formation of the GO/Fe3O4 nanocomposites was confirmed by X-ray diffraction (XRD), Energy dispersive X-ray analysis and Fourier transform infrared analysis. The morphology and particle size of the GO/Fe3O4 nanocomposites were investigated by Transmission electron microscopy (TEM) and Scanning electron microscopy. The grain size of the Fe3O4 nanoparticles was estimated about 10–20 nm from XRD. Also, the particle size of the Fe3O4 nanoparticles (according to TEM image) was found to be smaller than 20 nm. Finally magnetite property of the GO/Fe3O4 nanocomposites was studied by vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. The VSM and Mössbauer results were confirmed each other and shown the magnetite property decrease by decreasing the Fe3O4 amount of samples. Also, catalytic activity of the GO/Fe3O4 nanocomposites has been tested for the reduction of methylene blue at room temperature. It was found that the GO/Fe3O4 nanocomposites are highly active and recyclable catalysts and due to the magnetic separability can be recovered and reused several times without marked loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11

Similar content being viewed by others

References

  1. V. Štengl, S. Bakardjieva, T.M. Grygar, J. Bludská, M. Kormunda, TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem. Cent. J. 7, 41–53 (2013)

    Article  Google Scholar 

  2. G. Liu, W. Jiang, D. Sun, Y. Wang, F. Li, One-pot synthesis of urchinlike Ni nanoparticles/RGO composites with extraordinary electromagnetic absorption properties. Appl. Surf. Sci. 314, 523–529 (2014)

    Article  Google Scholar 

  3. Q.H. Wua, B. Qu, J. Tang, C. Wang, D.Y. Wang, J. Li, G. Ren, An alumina-coated Fe3O4-reduced graphene oxide composite electrode as a stable anode for lithium-ion battery. Electrochim. Acta 156, 147–153 (2015)

    Article  Google Scholar 

  4. H. Wang, X. Yuan, Y. Wu, X., H. Chen, L., Leng, Wang, H. Li, G. Zeng, Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr (VI) removal. Chem. Eng. J. 262, 597–606 (2015)

    Article  Google Scholar 

  5. M. Nasrollahzadeh, M. Atarod, B. Jaleh, M. Gandomi, In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Int. 42, 8587–8596 (2016)

    Article  Google Scholar 

  6. M. Vinothkannana, C. Karthikeyan, G.G. Kumar, A.R. Kim, D.J. Yoo, One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim. Acta A 136, 256–264 (2015)

    Article  Google Scholar 

  7. P. Fakhri, B. Jaleh, M. Nasrollahzadeh, Synthesis and characterization of copper nanoparticles supported on reduced graphene oxide as a highly active and recyclable catalyst for the synthesis of formamides and primary amines. J. Mol. Catal. A Chem. 383–384, 17–22 (2014)

    Article  Google Scholar 

  8. J. Wang, B. Tang, T. Tsuzuki, Q. Liu, X. Hou, L. Sun, Synthesis, characterization and adsorption properties of superparamagnetic polystyrene/Fe3O4/graphene oxide. Chem. Eng. J. 204–206, 258–263 (2012)

    Article  Google Scholar 

  9. X. Liu, H. Zhu, X. Yang, An amperometric hydrogen peroxide chemical sensor based on graphene-Fe3O4 multilayer films modified ITO electrode. Talanta 87, 243–248 (2011)

    Article  Google Scholar 

  10. B. Jaleh, A. Jabbari, Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 320, 339–347 (2014)

    Article  Google Scholar 

  11. S. Naghdi, K.Y. Rhee, B. Jaleh, S.J. Park, Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea”. Appl. Surf. Sci. 364, 686–693 (2016)

    Article  Google Scholar 

  12. M.P. Deosarkara, S.M. Pawar, B.A. Bhanvase, In situ sonochemical synthesis of Fe3O4-graphene nanocomposite for lithium rechargeable batteries. Chem. Eng. Process. 83, 49–55 (2014)

    Article  Google Scholar 

  13. Ö. Metin, Ş. Aydoğan, K. Meral, A new route for the synthesis of graphene oxide Fe3O4 (GO-Fe3O4) nanocomposites and their Schottky diode applications. J. Alloy. Compd. 585, 681–688 (2014)

    Article  Google Scholar 

  14. H. Chengen, L. Zixiu, L. Yun, H. Leping, Y. Yingkui, Graphene-supported silver nanoparticles with high activities toward chemical catalytic reduction of Methylene Blue and electrocatalytic oxidation of hydrazine. Int. J. Electrochem. Sci. 11, 9566–9574 (2016)

    Google Scholar 

  15. D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 20, 3970–3974 (2014)

    Article  Google Scholar 

  16. P. Hu, S. Zhang, H. Wang, D. Pan, J. Tian, Z. Tang, A.A. Volinsky, Heat treatment effects on Fe3O4 nanoparticles structure and magnetic properties prepared by carbothermal reduction. J. Alloy. Compd. 509, 2316–2319 (2011)

    Article  Google Scholar 

  17. L. Blaney, Magnetite (Fe3O4): properties, synthesis, and applications. Lehigh Rev. 15, 33–81 (2007)

    Google Scholar 

  18. T. Perez-Gonzalez, A. Rodriguez-Navarro, C. Jimenez-Lopez, Inorganic magnetite precipitation at 25 °C: a low-cost inorganic coprecipitation method. J. Supercond. Nov. Magn. 24, 549–557 (2011)

    Article  Google Scholar 

  19. M. Günay, A. Baykal, H. Sözeri, Structural and magnetic properties of triethylene glycol stabilized monodisperse Fe3O4 nanoparticles. J. Supercond. Nov. Magn. 25, 2415–2420 (2012)

    Article  Google Scholar 

  20. A.A. Shal, A. Jafari, Study of structural and magnetic properties of superparamagnetic Fe3O4-ZnO core–shell nanoparticles. J. Supercond. Nov. Magn. 27, 1531–1538 (2014)

    Article  Google Scholar 

  21. K. Chinnaraj, A. Manikandan, P. Ramu, S.A. Antony, P. Neeraja, Comparative studies of microwave and sol–gel assisted combustion methods of fe3o4 nanostructures: structural, morphological, optical, magnetic, and catalytic properties. J. Supercond. Nov. Magn. 28, 179–190 (2015)

    Article  Google Scholar 

  22. P.H. Linh, D.H. Manh, P.T. Phong, L.V. Hong, N.X. Phuc, Magnetic properties of Fe3O4 nanoparticles synthesized by coprecipitation method. J. Supercond. Nov. Magn. 27, 2111–2115 (2014)

    Article  Google Scholar 

  23. N.S. Sidorov, A.V. Palnichenko, I.I. Zver’kova, Superconductivity at 125 K in the metallic-oxidized iron interface. J. Supercond. Nov. Magn. 24, 1433–1435 (2011)

    Article  Google Scholar 

  24. M. Nasrollahzadeh, B. Jaleh, A. Jabbari, Synthesis, characterization and catalytic activity of graphene oxide/ZnO nanocomposites. RSC Adv. 4, 36713–36720 (2014)

    Article  Google Scholar 

  25. X. Liu, L. Pan, T. Lv, Z. Sun, C.Q. Sun, Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method. J. Colloid Interface Sci. 408, 145–150 (2013)

    Article  Google Scholar 

  26. L. Shahriary, A. Athawale, Graphene oxide synthesized by using modified Hummers approach. Int. J. Renew. Energy Environ. Eng. 2, 2348–0157 (2014)

    Google Scholar 

  27. J.C. Qu, C.L. Ren, Y.L. Dong, Y.P. Chang, M.G. Zhou, X. Chen, Facile synthesis of multifunctional graphene oxide/AgNPs-Fe3O4 nanocomposite: a highly integrated catalysts. Chem. Eng. J. 211–212, 412–420 (2012)

    Article  Google Scholar 

  28. S. Jafari, S.F. Shayesteh, M. Salouti, K. Boustani, Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles. J. Magn. Magn. Mater. 379, 305–312 (2015)

    Article  Google Scholar 

  29. S. Morup, H. Topsoe, J. Lipka, Modified theory for Mössbauer spectra of superparamagnetic particles: application to Fe3O4. J. Phys. Colloq. 37, 287–290 (1976)

    Article  Google Scholar 

  30. V.I. Goldanskii, R.H. Herber, Chemical Applications of Mössbauer Spectroscopy (Academic Press, New York and London, 1968)

    Google Scholar 

  31. U. Gonser, Mössbauer spectroscopy І and II: the exotic side of the method. Topics Appl. Phys. 5 and Topics Curr. Phys. 25, (Springer, Berlin, Heidelberg 1975 and 1981)

  32. J.M. Greneche, Metallic glasses: Mössbauer contribution, physical properties and applications. Hyperfine Interact. 111, 261–268 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Iranian Nano Council and the University of Bu Ali Sina and Qom for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Jaleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaleh, B., Khalilipour, A., Habibi, S. et al. Synthesis, characterization, magnetic and catalytic properties of graphene oxide/Fe3O4 . J Mater Sci: Mater Electron 28, 4974–4983 (2017). https://doi.org/10.1007/s10854-016-6151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6151-4

Keywords

Navigation