Advertisement

Facile hydrothermal synthesis of cobalt stannate (Co2SnO4) nano particles for electrochemical properties

  • V. K. Premkumar
  • G. Sivakumar
  • S. Dinesh
  • S. Barathan
Article

Abstract

In recent decades, super capacitor is considered to be a prime candidate for the next generation of electrochemical applications. In the present work, nano structured pure Co2SnO4 nanoparticles (Co2SnO4 NPs) were successfully synthesized by a facile hydrothermal method using sodium hydroxide as a mineralizer. This synthesized product calcinated at 900 °C was used to the formation of cubic structured Co2SnO4 NPs, which is confirmed through TG/DT analysis. Crystalline phase and the mean crystalline size of the Co2SnO4 NPs were evaluated from the XRD study. Surface morphology of Co2SnO4 NPs was confirmed by FE-SEM and HRTEM analysis. Hydrodynamic size distribution and surface potential were measured by using dynamic light scattering. From the FT-IR study, the presences of Co–O and Sn–O vibrations were identified. Cyclic voltammetry measurement, the specific capacitance value was calculated as 596 F g−1 at a scan rate 2 mV s−1 for Co2SnO4 NPs which paves way for the super capacitor applications.

Keywords

Specific Capacitance Field Emission Scanning Electron Microscope Electrochemical Performance High Resolution Transmission Electron Microscope Dynamic Light Scattering Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, J. Chen, Chem. Soc. Rev. 44(3), 699–728 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Chen, X. Lou, J. Power Sources 195(9), 2905–2908 (2010)CrossRefGoogle Scholar
  3. 3.
    X. Lou, Y. Wang, C. Yuan, J. Lee, L. Archer, Adv. Mater. 18, 2325–2329 (2006)CrossRefGoogle Scholar
  4. 4.
    J. Ma, A. Manthiram, RSC Adv. 2, 3187–3189 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Min, T. Wu, W. Yang, C. Li, Mater. Chem. Phys. 117, 70–73 (2009)CrossRefGoogle Scholar
  6. 6.
    P. Sivagurunathan, S.R. Gibin, J. Mater. Sci. Mater. Electron. 27, 1–8 (2016)Google Scholar
  7. 7.
    C. Chen, Q. Ru, S. Hu, B. An, X. Song, X. Hou, Electrochim. Acta 151, 203–213 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Thota, V. Narang, S. Nayak, S. Sambasivam, B. Choi, T. Sarkar, M. Andersson, R. Mathieu, M. Seehra, J. Phys. Condens. Matter 27, 166001 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Qi, N. Du, H. Zhang, P. Wu, D. Yang, J. Power Sources 196, 10234–10239 (2011)Google Scholar
  10. 10.
    S. Dinesh, S. Barathan, V. Premkumar, G. Sivakumar, N. Anandan, J. Mater. Sci. Mater. Electron. 27, 9668–9675 (2016)Google Scholar
  11. 11.
    M. Alpuche-Aviles, Y. Wu, J. Am. Chem. Soc. 131, 3216–3224 (2009)CrossRefGoogle Scholar
  12. 12.
    E. Leja, T. Stapinski, K. Marszalek, Thin Solid Films 125, 119–122 (1985)CrossRefGoogle Scholar
  13. 13.
    L. Oh, D. Kim, J. Lee, S. Shin, J. Lee, I. Park, M. Ko, N. Park, S. Pyo, K. Hong, J. Kim, J. Phys. Chem. C 118, 22991–22994 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Chen, M. Cao, C. Hu, J. Phys. Chem. C 115, 5522–5529 (2011)CrossRefGoogle Scholar
  15. 15.
    P. He, Z. Xie, Y. Chen, F. Dong, H. Liu, Mater. Chem. Phys. 137, 576–579 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Pfaff, J. Eur. Ceram. Soc. 35(12), 3017–3021 (1993)Google Scholar
  17. 17.
    T. Ishigaki, A. Torisaka, K. Nomizu, P. Madhusudan, K. Uematsu, K. Toda, M. Sato, Dalton Trans. 42(14), 4781–4785 (2013)CrossRefGoogle Scholar
  18. 18.
    W. Wang, Y. Xiao, X. Zhao, B. Liu, M. Cao, CrystEngComm 16(5), 922–929 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Lei, K. Tang, C. Chen, Y. Jin, L. Zhou, Mater. Res. Bull. 44(2), 393–397 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Al-Shahrani, J. Mater. Sci. Mater. Electron. 16(4), 193–196 (2005)CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Adv. Energy Mater. 6 (2016). doi: 10.1002/aenm.201502175
  22. 22.
    J. Aguilar-Martinez, M. Pech-Canul, M. Esneider, A. Toxqui, S. Shaji, Mater. Lett. 78, 28–31 (2012)CrossRefGoogle Scholar
  23. 23.
    B. An, Q. Ru, S. Hu, X. Song, J. Li, Mater. Res. Bull. 60, 640–647 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Aguilar-Martinez, M. Esneider-Alcala, M. Hernandez, M. PechCanul, S. Shaji, J. Alloys Compd. 574, 278–282 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Abbas, S. Mansour, M. Ibrahim, S. Ali, J. Magn. Magn. Mater. 324, 2781–2787 (2012)CrossRefGoogle Scholar
  26. 26.
    G. Wang, Z. Liu, P. Liu, Electrochim. Acta 56, 9515–9519 (2011)CrossRefGoogle Scholar
  27. 27.
    J. Zhang, J. Liang, Y. Zhu, D. Wei, L. Fan, Y. Qian, J. Mater. Chem. A 2, 2728–2734 (2014)CrossRefGoogle Scholar
  28. 28.
    F. Huang, X.Z. Lu, Y.F. Zhang, X.Y. Luo, C. Yu, R. Wu, Mater. Sci. Pol. 27(1), 239–248 (2009)Google Scholar
  29. 29.
    H. Wang, J. Huang, L. Ding, C. Wang, Y. Han, J. Wuhan Univ. Technol. Mater. Sci. Edit. 26, 257–261 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Shamirian, M. Edrisi, M. Naderi, J. Mater. Eng. Perform. 22, 306–311 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Bouchaabaa, B. Bellalb, R. Maachia, M. Trarib, N. Nasrallaha, A. Mellahc, J. Taiwan Inst. Chem. Eng. 000, 1–8 (2015)Google Scholar
  32. 32.
    A. Annamalai, Y. Eo, C. Im, M. Lee, Mater. Charact. 6(10), 1007–1015 (2011)CrossRefGoogle Scholar
  33. 33.
    G. Zhao, C. Xu, H. Li, J. Power Sources 163(2), 1132–1136 (2007)CrossRefGoogle Scholar
  34. 34.
    R. Ramachandran, S. Felix, G. Joshi, B. Raghupathy, S. Jeong, A. Grace, Mater. Res. Bull. 48(10), 3834–3842 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Pang, B. Wee, S. Chin, Int. J. Electron. Chem 2(1), 1–10 (2011). doi: 10.4061/2011/397685 Google Scholar
  36. 36.
    P. Sivagurunathan, S. Gibin, J. Mater. Sci. Mater. Electron. 27(3), 2601–2607 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. K. Premkumar
    • 1
  • G. Sivakumar
    • 2
  • S. Dinesh
    • 1
  • S. Barathan
    • 1
  1. 1.Department of PhysicsAnnamalai UniversityChidambaramIndia
  2. 2.CISL, Department of PhysicsAnnamalai UniversityChidambaramIndia

Personalised recommendations