Influence of annealing time on the physical properties of reactively sputtered CuO thin film

  • Unal Akgul
  • Koksal Yildiz
  • Yusuf Atici


Polycrystalline CuO thin film was deposited by reactive RF magnetron sputtering technique. The samples obtained from CuO film were annealed in air for different times. The structural, compositional and optical properties of unannealed and annealed samples were characterized. The SEM studies showed that the samples have a homogeneous surface morphology. All of the samples exhibited strong \((\bar{1}11)\) diffraction peak and optical transmittance above 70%. As the annealing time was increased, the grain size increased and the optical band gap decreased.


Annealing Time Copper Oxide Cupric Oxide Thin Film Sample Strong Diffraction Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by Scientific Research Projects Coordination Unit of Firat University (Project No. 1386).


  1. 1.
    J. Sohn, S.-H. Song, D.-W. Nam, I.-T. Cho, E.-S. Cho, J.-H. Lee, H.-I. Kwon, Semicond. Sci. Technol. 28, 1 (2013)CrossRefGoogle Scholar
  2. 2.
    E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945 (2012)CrossRefGoogle Scholar
  3. 3.
    K.C. Sanal, L.S. Vikas, M.K. Jayaraj, Appl. Surf. Sci. 297, 153 (2014)CrossRefGoogle Scholar
  4. 4.
    M.F. Al-Kuhaili, Vacuum 82, 623 (2008)CrossRefGoogle Scholar
  5. 5.
    A.H. Jayatissa, K. Guo, A.C. Jayasuriya, Appl. Surf. Sci. 255, 9474 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Visalakshi, R. Kannan, S. Valanarasu, H.-S. Kim, A. Kathalingam, R. Chandramohan, Appl. Phys. A 120, 1105 (2015)CrossRefGoogle Scholar
  7. 7.
    C.R. Gobbiner, A.V.M. Ali, D. Kekuda, J. Mater. Sci. Mater. Electron. 26, 9801 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Shabu, A.M.E. Raj, C. Sanjeeviraja, C. Ravidhas, Mater. Res. Bull. 68, 1 (2015)CrossRefGoogle Scholar
  9. 9.
    U. Akgul, K. Yildiz, Y. Atici, Eur. Phys. J. Plus 131(89), 1 (2016)Google Scholar
  10. 10.
    J.F. Chang, W.C. Lin, M.H. Hon, Appl. Surf. Sci. 183, 18 (2001)CrossRefGoogle Scholar
  11. 11.
    F.A. Harraz, A.A. Ismail, S.A. Al-Sayari, A. Al-Hajry, J. Photochem. Photobiol. A 299, 18 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Huang, Q.N. Ling, C.H. Huang, K. Bi, W.J. Wang, T.Z. Yang, Y.K. Lu, J. Liu, R. Zhang, D.Y. Fan, Y.G. Wang, M. Lei, J. Alloys Compd. 646, 837 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, J. Gu, M. Murugananthan, Y. Zhang, J. Alloys Compd. 630, 110 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Zhao, R. Liu, Z. Hua, Superlattice Microstruct. 81, 243 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Chabane, N. Zebbar, M.L. Zeggar, M.S. Aida, M. Kechouane, M. Trari, Mat. Sci. Semicond. Proc. 40, 840 (2015)CrossRefGoogle Scholar
  16. 16.
    U.C. Bind, R.K. Dutta, G.K. Sekhon, K.L. Yadav, J.B.M. Krishna, R. Menon, P.Y. Nabhiraj, Superlattice Microstruct. 84, 24 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Thambidurai, N. Muthukumarasamy, A. Ranjitha, D. Velauthapillai, Superlattice Microstruct. 86, 559 (2015)CrossRefGoogle Scholar
  18. 18.
    P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, D.D. Kumar, P.V. Thomas, Thin Solid Films 550, 121 (2014)CrossRefGoogle Scholar
  19. 19.
    U. Akgul, Ph.D. Thesis, Firat University, Turkey (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceFirat UniversityElazigTurkey

Personalised recommendations