Skip to main content
Log in

Investigation of density of states and electrical properties of Ba0.5Co0.5Bi2Nb2O9 nanoceramics prepared by chemical route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium-cobalt-bismuth-niobate, Ba0.5Co0.5Bi2Nb2O9 (BCoBN) nanocrystalline ferroelectric ceramic was prepared through chemical route. XRD analysis showed single phase layered perovskite structure of BCoBN when calcined at 650 °C, 2 h. The average crystallite size was found to be 18 nm. The microstructure was studied through scanning electron microscopy. The dielectric and ferroelectric properties were investigated in the temperature range 50–500 °C. The dielectric constant and dielectric loss plot with respect to temperature both indicated strong relaxor behavior. Frequency versus complex impedance plot also supported the relaxor properties of the material. The impedance spectroscopy study showed only grain conductivity. Variation of ac conductivity study exhibited Arrhenius type of electrical conductivity where the hopping frequency shifted towards higher frequency region with increasing temperature. The ac conductivity values were used to evaluate the density of state at the Fermi level. The minimum hopping distance was found to be decreased with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Aurivillius, Arkiv Kemi 1, 463 (1949)

    Google Scholar 

  2. B. Aurivillius, Arkiv Kemi 1, 499 (1949)

    Google Scholar 

  3. B. Aurivillius, Arkiv Kemi 2, 519 (1950). ISSN: 0365-6128

    Google Scholar 

  4. M. Adamczyk, Z. Ujma, M. Pawełczyk, J. Mater. Sci. 41, 5317 (2006)

    Article  Google Scholar 

  5. G.A. Samara, E.L. Venturini, Phase Transit. 79, 21 (2006)

    Article  Google Scholar 

  6. D. Viehland, S.G. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)

    Article  Google Scholar 

  7. B. Dkhil, S.G. Jang, J.M. Kiat, G. Calvarin, G. Baldinozzi, S.B. Vakhrushev, E. Suard, Phys. Rev. B 65, 24104 (2001)

    Article  Google Scholar 

  8. C. Karthik, K.B.R. Varma, J. Phys. Chem. Solids 67, 2437 (2006)

    Article  Google Scholar 

  9. M. Adamczyk, A. Molak, Z. Ujma, Ceram. Int. 35, 2197 (2009)

    Article  Google Scholar 

  10. T. Mazon, M.A. Zaghete, M. Cilense, J.A. Varela, Ceram. Int. 35, 3143 (2009)

    Article  Google Scholar 

  11. D. Dhak, T.K. Ghorai, P. Pramanik, Solid State Sci. 9, 57 (2007)

    Article  Google Scholar 

  12. S.P. Gaikwad, V. Samuel, R. Pasricha, V. Ravi, Mater. Lett. 58, 3729 (2004)

    Article  Google Scholar 

  13. A. Laha, S.B. Krupanidhi, Appl. Phys. Lett. 77, 3818 (2000)

    Article  Google Scholar 

  14. M. Miranda, E.V. Costa, M. Avdeev, A.L. Kholkin, J.L. Baptista, J. Eur. Ceram. Soc. 21, 1303 (2001)

    Article  Google Scholar 

  15. A.L. Kholkin, M. Avdeev, M.E.V. Costa, J.L. Baptista, Appl. Phys. Lett. 79, 662 (2001)

    Article  Google Scholar 

  16. C. Karthik, K.B.R. Varma, Mater. Sci. Eng., B 129, 245 (2006)

    Article  Google Scholar 

  17. C. Karthik, K.B.R. Varma, Mario Maglione. J. Etourneau J. Appl. Phys. 101, 014106 (2007)

    Article  Google Scholar 

  18. B. Bishnoi, P.K. Mehta, R. Kumar, R.J. Choudhury, D.M. Phase, Integr. Ferroelectr. 122, 1 (2010)

    Article  Google Scholar 

  19. L. Sudheendra, M. Otin Seikh, A.R. Raju, C. Narayana, C.N.R. Rao, Ferroelectrics 306, 227 (2004)

    Article  Google Scholar 

  20. A. Pathak, S. Mohapatra, S. Mohapatra, S.K. Biswas, D. Dhak, N.K. Pramanik, A. Tarafdar, P. Pramanik, Am. Ceram. Soc. Bull. 83, 9301 (2004)

    Google Scholar 

  21. D. Dhak, P. Pramanik, J. Am. Ceram. Soc. 89, 1014 (2006)

    Article  Google Scholar 

  22. D. Dhak, S.K. Biswas, P. Pramanik, J. Eur. Ceram. Soc. 26, 3717 (2006)

    Article  Google Scholar 

  23. W.H. Bragg, W.L. Bragg, The reflexion of X-rays by crystals. Proc. R. Soc. Lond. A 88(605), 428–438 (1913). doi:10.1098/rspa.1913.0040

    Article  Google Scholar 

  24. X.C. Liu, R. Hong, C. Tian, J. Mater. Sci.: Mater. Electron. 20, 323 (2012)

    Google Scholar 

  25. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, Internet Version 2005 (CRC Press, Boca Raton, 2005)

    Google Scholar 

  26. A. Patterson, Phys. Rev. 56, 978 (1939)

    Article  Google Scholar 

  27. D.J. Cheney, E.A. Douglas, L. Liu, C.F. Lo, Y.Y. Xi, B.P. Gila, F. Ren, D. Horton, M.E. Law, D.J. Smith, Semicond. Sci. Technol. 28, 074019 (2013)

    Article  Google Scholar 

  28. F. Varnik, A. Rios, M. Gross, I. Steinbach, Model. Simul. Mater. Sci. Eng. 21, 025003 (2013)

    Article  Google Scholar 

  29. P.R. Bueno, E.R. Leite, L.O.S. Bulhões, E. Longo, C.O. Paiva-Santos, J. Eur. Ceram. Soc. 23, 887 (2003)

    Article  Google Scholar 

  30. M.N. Rahaman, Ceramic Processing and Sintering, 2nd edn. (CRC Press, New York, 2005)

    Google Scholar 

  31. S.J.L. Kang, Sintering Densification, Grain Growth, and Microstructure, 1st edn. (Elsevier, Oxford, 2005)

    Google Scholar 

  32. E.V. Colla, E.U. Koroleva, N.M. Okuneva, S.B. Vakhrushev, J. Phys.: Condens. Matter 4, 3671 (1992)

    Google Scholar 

  33. S. Kumar, K.B.R. Varma, Solid State Commun. 147, 457 (2008)

    Article  Google Scholar 

  34. T. Badapanda, V. Senthil, S.K. Rout, S. Panigrahi, T.P. Sinha, Mater. Chem. Phys. 133, 863 (2012)

    Article  Google Scholar 

  35. P. Dhak, D. Dhak, M. Das, K. Pramanik, P. Pramanik, Mater. Sci. Eng., B 164, 165 (2009)

    Article  Google Scholar 

  36. J. Suchanicz, Mater. Sci. Eng., B 55, 114 (1998)

    Article  Google Scholar 

  37. Y. Hosono, K. Harada, Y. Yamashita, Jpn. J. Appl. Phys. 40, 5722 (2001)

    Article  Google Scholar 

  38. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  39. A.J. Moulson, J.M. Herbert, Electroceramics (Chapman & Hall, London, 1990)

    Google Scholar 

  40. P. Dhak, D. Dhak, M. Das, P. Pramanik, J. Mater. Sci.: Mater. Electron. 22, 1750 (2011)

    Google Scholar 

  41. M.P. Dasari, K.S. Rao, P.M. Krishna, G.G. Krishna, Acta Phys. Pol., A 119, 317 (2011)

    Article  Google Scholar 

  42. M. Vijayakumar, S. Selvasekarapandian, M.S. Bhuvaneswari, G. Hirankumar, G. Ramprasad, R. Subramanian, P.C. Angelo, Phys. B 334, 390 (2003)

    Article  Google Scholar 

  43. S. Sen, R.N.P. Chowdhary, A. Tarafdar, P. Pramanik, J. Appl. Phys. 99, 124114 (2006)

    Article  Google Scholar 

  44. S. Mollah, K.K. Som, K. Bose, B.K. Chaudri, J. Appl. Phys. 74, 931 (1993)

    Article  Google Scholar 

  45. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  Google Scholar 

  46. K. Prasad, S. Bhagat, K. Amarnath, S.N. Choudhary, K.L. Yadav, Mater. Sci. Pol. 28, 1 (2010)

    Google Scholar 

Download references

Acknowledgements

Author thanks SERB, DST, New Delhi, India for financial support (Grant No. SR/FT-CS-125, 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Dhak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adak, M.K., Mondal, S.S., Dhak, P. et al. Investigation of density of states and electrical properties of Ba0.5Co0.5Bi2Nb2O9 nanoceramics prepared by chemical route. J Mater Sci: Mater Electron 28, 4676–4683 (2017). https://doi.org/10.1007/s10854-016-6107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6107-8

Keywords

Navigation