Skip to main content
Log in

Influence of sintering temperatures of ceramic targets on microstructures and photoelectric properties of titanium-doped ZnO nano-films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin films of Ti-doped ZnO (TZO) were prepared by RF magnetron sputtering using targets prepared with sintering temperatures in the range 1100–1500 °C; the microstructures and optoelectronic properties of the TZO targets and films were characterized by SEM, XRD, Hall Effect analysis, UV–VIS spectrophotometry and physical property measurement system. Results indicated that the target sintering temperature affected both the TZO targets and films. The Ti/Zn atomic ratios in the targets decreased progressively with increasing sintering temperature, but by a smaller amount in films prepared from them. XRD patterns showed that all films were preferentially oriented along the c axis at 2θ ~ 34° in their XRD patterns. The films sputtered with targets sintered at above 1300 °C were relatively smooth, and had larger average grain size. The target sintered at 1450 °C had the highest density. The best optoelectronic properties were found with the film sputtered from the target sintered at 1300 °C; this sample had superior crystal properties, high average optical transmittance (88.9%), and the lowest resistivity (8.47 × 10−4 Ω cm). Furthermore, the resistivity of all the films changed with temperature between 10 and 350 K, they experienced an initial decrease followed by an increase as the temperature was raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Onwona-Agyeman, M. Nakao, T. Kohno, D. Liyanage, K. Murakami, T. Kitaoka, Chem. Eng. J. 219, 273 (2013)

    Article  Google Scholar 

  2. Q. Huang, Y.F. Wang, S. Wang, D.K. Zhang, Y. Zhao, X.D. Zhang, Thin Solid Films 520, 5960 (2012)

    Article  Google Scholar 

  3. M.H. Jiang, X.Y. Liu, H. Wang, Surf. Coat. Technol. 203, 3750 (2009)

    Article  Google Scholar 

  4. J.Y. Kao, C.Y. Hsu, G.C. Chen, D.C. Wen, J. Mater. Sci.: Mater. Electron. 23, 1352 (2012)

    Google Scholar 

  5. Q.B. Ma, H.P. He, Z.Z. Ye, L.P. Zhu, J.Y. Huang, Y.Z. Zhang, B.H. Zhao, J. Solid State Chem. 181, 525 (2008)

    Article  Google Scholar 

  6. S. Okuda, T. Matsuo, H. Chiba, T. Mori, K. Washio, Thin Solid Films 557, 197 (2014)

    Article  Google Scholar 

  7. L.P. Peng, L. Fang, X.F. Yang, Q.L. Huang, F. Wu, Y.C. Cao, M.W. Li, C.Y. Kong, Int. J. Mod. Phys. B 25, 995 (2011)

    Article  Google Scholar 

  8. L.P. Peng, L. Fang, X.F. Yang, H.B. Ruan, Y.J. Li, Q.L. Huang, C.Y. Kong, Phys. E.: Low-Dimens. Syst. Nanostruct. 41, 1819 (2009)

    Article  Google Scholar 

  9. H. Qin, H.F. Liu, Y.Z. Yuan, Surf. Eng. 29, 70 (2013)

    Article  Google Scholar 

  10. S. Wang, J. Shen, Z.J. Zhang, X.L. Yang, Q. Zhang, J. Vac. Sci. Technol. 28, 1 (2008)

    Google Scholar 

  11. H.W. Wu, R.Y. Yang, C.M. Hsiung, C.H. Chu, J. Mater. Sci.: Mater. Electron. 24, 166 (2013)

    Google Scholar 

  12. J.W. Xu, H. Wang, M.H. Jiang, X.Y. Liu, Bull. Mater. Sci. 33, 119 (2010)

    Article  Google Scholar 

  13. H.F. Zhang, R.J. Liu, H.F. Liu, Q.S. Chen, X.F. Wang, Y.X. Mei, J. Synth. Cryst. 39, 766 (2010)

    Google Scholar 

  14. H.X. Chen, W.G. Guo, J.J. Ding, S.Y. Ma, Superlattices Microstruct. 51, 544 (2012)

    Article  Google Scholar 

  15. Y.C. Lin, C.Y. Hsu, S.K. Hung, D.C. Wen, Ceram. Int. 39, 5795 (2013)

    Article  Google Scholar 

  16. S.S. Lin, J.L. Huang, D.F. Lii, Mater. Chem. Phys. 90, 22 (2005)

    Article  Google Scholar 

  17. H.P. Chang, F.H. Wang, J.C. Chao, C.C. Huang, H.W. Liu, Curr. Appl. Phys. 11, S185 (2011)

    Article  Google Scholar 

  18. F.H. Wang, H.P. Chang, J.C. Chao, Thin Solid Films 519, 5178 (2011)

    Article  Google Scholar 

  19. J. Liu, S.Y. Ma, X.L. Huang, L.G. Ma, F.M. Li, F.C. Yang, Q. Zhao, X.L. Zhang, Superlattices Microstruct. 52, 765 (2012)

    Article  Google Scholar 

  20. K. Bergum, P.A. Hansen, H. Fjellvag, O. Nilsen, J. Alloys Compd. 616, 618 (2014)

    Article  Google Scholar 

  21. W.S. Liu, S.Y. Wu, C.H. Tseng, C.Y. Hung, Thin Solid Films 570, 568 (2014)

    Article  Google Scholar 

  22. L. Gao, Y. Zhang, J.M. Zhang, K.W. Xu, Appl. Surf. Sci. 257, 2498 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Dr. Bernard A. Goodman for his helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos.112650020 and 11675043), and Foundation of Xingjian College of Guangxi of University China (Grant No. 2016ZKA01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, F., Chen, X. et al. Influence of sintering temperatures of ceramic targets on microstructures and photoelectric properties of titanium-doped ZnO nano-films. J Mater Sci: Mater Electron 28, 4654–4660 (2017). https://doi.org/10.1007/s10854-016-6104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6104-y

Keywords

Navigation