Skip to main content
Log in

Effect of isovalent lanthanide cations compensation for volatilized A-site bismuth in Aurivillius ferroelectric bismuth titanate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth titanate ferroelectric ceramics (BiT) compensated(doped) by 3 mol% of Bi3+ or Ln3+ (BiT–Bi, BiT–Ln; Ln = La, Nd, Sm) were synthesized by conventional solid-state reaction, then the effects of compensation towards the lattice structure as well as the ferroelectric properties were studied. Rietveld refinement of the structure confirmed the pure Aurivillius phase with space group B2cb in all the constituents, however the trace amount of Bi2O3 and Ln2O3 could also act as sintering aids during sintering. The 6s 2 lone pair electrons of Bi3+ in perovskites localize into a lobe shape and the lobes major axis prefer to align along the a-axis, resulting the Bi3+ in perovskites showing a smaller effective radius compared with Ln3+ and causing higher lattice distortion. In addition, the paraelectric–ferroelectric phase transition temperature (Curie temperature, T c ), piezoelectric coefficient (d 33), spontaneous polarization (P s ), a.c. conductivity [σ(ω)] and activation energy of dielectric relaxation (E a ) increase with decreasing A-site cation radius. Furthermore, ferroelectric polarization and electromechanical properties of the BiT–Bi were enhanced dramatically due to the oxygen vacancies suppression by the compensation, which was confirmed by electric modulus approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  2. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)

    Article  Google Scholar 

  3. Y. Saito, H. Takao, T. Tani et al., Nature 432, 84 (2004)

    Article  Google Scholar 

  4. J. Bennett, A.J. Bell, T.J. Stevenson, T.P. Comyn, Scr. Mater. 68, 491 (2013)

    Article  Google Scholar 

  5. A.J. Bell, J. Eur. Ceram. Soc. 28, 1307 (2008)

    Article  Google Scholar 

  6. F. Zhu, T.A. Skidmore, A.J. Bell et al., Mater. Chem. Phys. 129, 411 (2011)

    Article  Google Scholar 

  7. G. Stone, D. Lee, H. Xu, S.R. Phillpot, V. Dierolf, Appl. Phys. Lett. 102, 042905 (2013)

    Article  Google Scholar 

  8. K. Li, X.L. Zhu, X.Q. Liu, X.M. Chen, Appl. Phys. Lett. 100, 012902 (2012)

    Article  Google Scholar 

  9. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)

    Article  Google Scholar 

  10. R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Mater. Res. Bull. 6, 1029 (1971)

    Article  Google Scholar 

  11. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  Google Scholar 

  12. Y.Y. Yao, C.H. Song, P. Bao et al., J. Appl. Phys. 95, 3126 (2004)

    Article  Google Scholar 

  13. U. Chon, K.-B. Kim, H.M. Jang, G.C. Yi, Appl. Phys. Lett. 79, 3137 (2001)

    Article  Google Scholar 

  14. U. Chon, H.M. Jang, M.G. Kim, C.H. Chang, Phys. Rev. Lett. 89, 087601 (2002)

    Article  Google Scholar 

  15. X.J. Zheng, L. He, M.H. Tang, Y. Ma, J.B. Wang, Q.M. Wang, Mater. Lett. 62, 2876 (2008)

    Article  Google Scholar 

  16. Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 74, 1904 (1999)

    Article  Google Scholar 

  17. A.C. Larson., R.B.V. Dreele., Los Alamos National Laboratory Report LAUR 86 (1994)

  18. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, J. Appl. Crystallogr. 32, 36 (1999)

    Article  Google Scholar 

  19. C. Long, H. Fan, M. Li, G. Dong, Q. Li, Scr. Mater. 75, 70 (2014)

    Article  Google Scholar 

  20. C.H. Hervoches, P. Lightfoot, Chem. Mater. 11, 3359 (1999)

    Article  Google Scholar 

  21. J.P. Guha, D.J. Hong, H.U. Anderson, J. Am. Ceram. Soc. 71, 152 (1988)

    Google Scholar 

  22. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385 (2004)

    Article  Google Scholar 

  23. H.S. Shulman, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 83, 528 (2000)

    Article  Google Scholar 

  24. R.T. Shannon, Acta Crystallogr. Sec. A 32, 751 (1976)

    Article  Google Scholar 

  25. D.Y. Suarez, I.M. Reaney, W.E. Lee, J. Mater. Res. 16, 3139 (2001)

    Article  Google Scholar 

  26. Y. Shimakawa, Y. Kubo, Y. Nakagawa et al., Phys. Rev. B 61, 6559 (2000)

    Article  Google Scholar 

  27. R. Wolfe, R. Newnham, J. Electrochem. Soc. 116, 832 (1969)

    Article  Google Scholar 

  28. A. Sleight, G. Jones, Acta Crystallogr. Sect. B Struct. Sci. 31, 2748 (1975)

    Article  Google Scholar 

  29. E.C. Subbarao, Integr. Ferroelectr. 12, 33 (1996)

    Article  Google Scholar 

  30. P. Fang, H. Fan, Z. Xi et al., J. Alloys Compd. 550, 335 (2013)

    Article  Google Scholar 

  31. R. Seshadri, G. Baldinozzi, C. Felser, W. Tremel, J. Mater. Chem. 9, 2463 (1999)

    Article  Google Scholar 

  32. R. Seshadri, N.A. Hill, Chem. Mater. 13, 2892 (2001)

    Article  Google Scholar 

  33. L. Shimoni-Livny, J.P. Glusker, C.W. Bock, Inorg. Chem. 37, 1853 (1998)

    Article  Google Scholar 

  34. R.A. Armstrong, R.E. Newnham, Mater. Res. Bull. 7, 1025 (1972)

    Article  Google Scholar 

  35. Y. Shimakawa, Y. Kubo, Y. Tauchi et al., Appl. Phys. Lett. 79, 2791 (2001)

    Article  Google Scholar 

  36. C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957 (2001)

    Article  Google Scholar 

  37. W. Li, K. Chen, Y. Yao, J. Zhu, Y. Wang, Appl. Phys. Lett. 85, 4717 (2004)

    Article  Google Scholar 

  38. V.K. Seth, W.A. Schulze, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 41 (1989)

    Article  Google Scholar 

  39. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)

    Article  Google Scholar 

  40. Y. Kitanaka, Y. Noguchi, M. Miyayama, Phys. Rev. B 81, 094114 (2010)

    Article  Google Scholar 

  41. S. Teranishi, M. Suzuki, Y. Noguchi et al., Appl. Phys. Lett. 92, 182905 (2008)

    Article  Google Scholar 

  42. U. Robels, G. Arlt, J. Appl. Phys. 73, 3454 (1993)

    Article  Google Scholar 

  43. S.M. Ke, H.T. Huang, H.Q. Fan, H.K. Lee, L.M. Zhou, Y.-W. Mai, Appl. Phys. Lett. 101, 082901 (2012)

    Article  Google Scholar 

  44. R.-A. Eichel, P. Erhart, P. Träskelin, K. Albe, H. Kungl, M.J. Hoffmann, Phys. Rev. Lett. 100, 095504 (2008)

    Article  Google Scholar 

  45. L. Liu, M. Wu, Y. Huang, Z. Yang, L. Fang, C. Hu, Mater. Chem. Phys. 126, 769 (2011)

    Article  Google Scholar 

  46. W.L. Warren, G.E. Pike, K. Vanheusden, D. Dimos, B.A. Tuttle, J. Robertson, J. Appl. Phys. 79, 9250 (1996)

    Article  Google Scholar 

  47. M.M. Kumar, Z.G. Ye, J. Appl. Phys. 90, 934 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (51672220), the 111 Program (B08040) of MOE, the National Defense Science Foundation (32102060303), and the Fundamental Research Funds for the Central Universities (3102014JGY01004) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Q., Fan, H. & Long, C. Effect of isovalent lanthanide cations compensation for volatilized A-site bismuth in Aurivillius ferroelectric bismuth titanate. J Mater Sci: Mater Electron 28, 4637–4646 (2017). https://doi.org/10.1007/s10854-016-6102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6102-0

Keywords

Navigation