Skip to main content
Log in

Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 27 July 2017

This article has been updated

Abstract

We report effect of oxygen vacancies on band gap narrowing, enhancement in electrical conductivity and room temperature ferromagnetism of SnO2 nanoparticles synthesized by simple chemical precipitation approach. As the calcination temperature is elevated from 400 to 800 °C, the average particle size increases from 12.26 to 34.43 nm, with enhanced grain growth and crystalline quality. At low temperatures, these nanoparticles are in a rather oxygen-poor state revealing the presence of many O vacancies and Sn interstitials in SnO2 nanoparticles as in this case Sn+2 is not oxidized completely to Sn+4 and small sized nano particles have more specific surface area, hence defects are more prominent. The oxygen content increases steadily with increasing temperature, with the Sn:O atomic ratio very near to the stoichiometric value of 1:2 at high temperatures suggesting the low density of defects. The optical band gap energies of all SnO2 nanoparticles are in the visible light region, decreasing from 2.89 to 1.35 eV, while room temperature ferromagnetism and electrical conductivity are enhanced with reduced temperatures. The dielectric constant (εr) exhibited dispersion behaviour and the Debye’s relaxation peaks were observed in tanδ. The variation of dielectric properties and ac conductivity revealed that the dispersion is due to Maxwell–Wagner interfacial polarization and hopping of charge carriers between Sn+2/Sn+4. The narrowed band gap energies and enhanced ferromagnetism are mainly attributed to the increase of defects density (e.g., oxygen vacancies). The presence of oxygen vacancies is confirmed by EDX, Raman, PL, XPS, and UV–Vis spectra. The band gap of 1.35 eV is the smallest value for SnO2 reported so far. This rather small band gap, enhanced conductivity and room temperature ferromagnetism demonstrate that SnO2 nanoparticles are very promising in the visible light photo catalysis and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 27 July 2017

    An erratum to this article has been published.

References

  1. S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Highly photoactive SnO2 nanostructures engineered by electrochemically active biofilm. New J. Chem. 38, 2462–2469 (2014)

    Article  Google Scholar 

  2. L. Li, X. Liu, Y. Zhang, N.T. Nuhfer, K. Barmak, P.A. Salvador, G.S. Rohrer, Visible-light photochemical activity of heterostructured core–shell materials composed of selected ternary titanates and ferrites coated by TiO2. ACS Appl. Mater. Interfaces 5, 5064–5071 (2013)

    Article  Google Scholar 

  3. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)

    Article  Google Scholar 

  4. S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee, M.H. Cho, Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5, 9238–9246 (2013)

    Article  Google Scholar 

  5. X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic Hydrogen generation. Chem. Rev. 110, 6503–6507 (2010)

    Article  Google Scholar 

  6. I. Kocemba, J.M. Rynkowski, The effect of oxygen adsorption on catalytic activity of SnO2 in CO oxidation. Catal. Today 169, 192–199 (2011)

    Article  Google Scholar 

  7. Zulfiqar, Y. Yuan, J. Yang, W. Wang, Z. Ye, J. Lu, Structural, dielectric and ferromagnetic behaviour of (Zn,Co) co-doped SnO2 nanoparticles. Ceram. Int. 42, 17128–17136 (2016)

    Article  Google Scholar 

  8. P.R. Bueno, S.A. Pianaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy. Appl. Phys. 84, 3700–3705 (1998)

    Article  Google Scholar 

  9. W. Dan, C. Xiangfeng, G. Menglian, Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties. Nanotechnology 18(185601), 1–4 (2007)

    Google Scholar 

  10. W. Gapel, K.D. Schierbaum, SnO2 sensors: current status and future prospects. Sens. Actuators B 26–27, 1–12 (2011)

    Google Scholar 

  11. Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S.H. Wei, T. Wu, Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 4, 1–6 (2012)

    Article  Google Scholar 

  12. R. Khan, Zulfiqar, M.U. Rahman, Z.U. Rehman, S. Fashu, Effect of air annealing on the structure, dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 10532–10540 (2016)

    Google Scholar 

  13. Zulfiqar, R. Khan, M.U. Rahman, Z. Iqbal, Variation of structural, dielectric and magnetic properties of PVP coated γ-Fe2O3 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 12490–12498 (2016)

    Google Scholar 

  14. P. Kofstad, Defects and transport properties of metal oxides. Oxid. Met. 44(1–2), 3–27 (1995)

    Article  Google Scholar 

  15. D.F. Cox, T.B. Fryberger, S. Semancik, Oxygen vacancies and defect electronic states on the SnO2 (110)-1 × 1 surface. Phys. Rev. B: Condens. Matter 38, 2072–2085 (1988)

    Article  Google Scholar 

  16. X. Liu, L. Pan, T. Chen, J. Li, K. Yu, Z. Sun, C. Sun, Visible light photocatalytic degradation of methylene blue by SnO2 quantum dots prepared via microwave-assisted method. Catal. Sci. Technol. 3, 1805–1809 (2013)

    Article  Google Scholar 

  17. A.K. Sinha, P.K. Manna, M. Pradhan, C. Mondal, S.M. Yusuf, T. Pal, Tin oxide with a p–n heterojunction ensures both UV and visible light photocatalytic activity. RSC Adv. 4, 208–211 (2014)

    Article  Google Scholar 

  18. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  Google Scholar 

  19. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photo-electrochemical and photocatalytic studies. Mater. Chem. A 2, 637–644 (2014)

    Article  Google Scholar 

  20. R. Long, N.J. English, Synergistic effects on band gap-narrowing in Titania by codoping from first-principles calculations. Chem. Mater. 22, 1616–1623 (2010)

    Article  Google Scholar 

  21. A.S. Ahmed, S.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1–6 (2011)

    Article  Google Scholar 

  22. F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Luminescent characteristics of Eu3+ in SnO2 nanoparticles. Opt. Mater. 25, 59–64 (2004)

    Article  Google Scholar 

  23. A. Kar, J. Yang, M. Dutta, M.A. Stroscio, J. Kumari, M. Meyyappan, Rapid thermal annealing effects on tin oxide nanowires prepared by vapor–liquid–solid technique. Nanotechnology 20, 065701–065704 (2009)

    Article  Google Scholar 

  24. Asdim, K. Manseki, T. Sugiura, T. Yoshida, Synthesis of size-controllable SnO2 nanocrystals for dye-sensitized solar cells. New J. Chem. 38, 598 (2014)

    Article  Google Scholar 

  25. B. Jia, W. Jia, F. Qu, X. Wu, General strategy for self-assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Adv. 3, 12140–12148 (2013)

    Article  Google Scholar 

  26. V.B. Kamble, A.M. Umarji, Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 3, 082120–082125 (2013)

    Article  Google Scholar 

  27. N. Li, G. Liu, Y. Xie, G. Zhou, J. Zhu, F. Li, H.M. Cheng, Effects of oxygen vacancies on the electrochemical performance of tin oxide. Mater. Chem. A 1, 1536–1539 (2013)

    Article  Google Scholar 

  28. H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, H. Kal, ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2, 1661–1670 (2008)

    Article  Google Scholar 

  29. Zulfiqar, Y. Yuan, Q. Jiang, J. Yang, L. Feng, W. Wang, Z. Ye, J. Lu, Variation in luminescence and bandgap of Zn-doped SnO2 nanoparticles with thermal decomposition. J. Mater. Sci.: Mater. Electron. 27, 9541–9549 (2016)

    Google Scholar 

  30. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Co, Boston, 1956)

    Google Scholar 

  31. C.M. Fan, Y. Peng, Q. Zhu, L. Lin, R.X. Wang, A.W. Xu, Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2−x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. Phys. Chem. C 117, 24157–24166 (2013)

    Article  Google Scholar 

  32. S. Kalathil, M.M. Khan, A.A. Sajid, M.H. Cho, J. Lee, Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilm and their visible light activity. Nanoscale 5, 6323–6326 (2013)

    Article  Google Scholar 

  33. Zulfiqar, Y. Yuan, J. Yang, W. Wang, Z. Ye, J. Lu, Structural and optical properties of (Zn, Co) co-doped SnO2 nano particles. J. Mater. Sci. Mater. Electron. 27, 12119–12127 (2016)

    Google Scholar 

  34. M. Ghosh, V. Pralong, A. Wattiaux, A. Sleight, M. Subramanian, Tin (II) doped anatase (TiO2) nanoparticles: a potential route to “greener” yellow pigments. Chem. Asian J. 4, 881–885 (2009)

    Article  Google Scholar 

  35. J.C.C. Fan, J.B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. Appl. Phys. 40, 3524 (1977)

    Article  Google Scholar 

  36. S. Park, T. Ikegami, K. Ebihara, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 513, 90 (2006)

    Article  Google Scholar 

  37. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134 (2000)

    Article  Google Scholar 

  38. S. Mehraj, M.S. Ansari, A.A. Al-Ghamdi, Alimuddin, Annealing dependent oxygen vacancies in SnO2 nanoparticles: structural, electrical and their ferromagnetic behavior. Mater. Chem. Phys. 171, 109–118 (2016)

    Article  Google Scholar 

  39. J.C. Maxwell, Electricity and Magnetism (Clarendon, Oxford, 1892)

    Google Scholar 

  40. K.W. Wagner, Ann. Phys. 40, 817 (1973)

    Google Scholar 

  41. M.B. Reddy, P.V. Reddy, Low-frequency dielectric behaviour of mixed Li-Ti ferrites. J. Phys. D. Appl. Phys. 24(6), 975–981 (1991)

    Article  Google Scholar 

  42. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  43. S. Mehraj, Ansari, Alimuddin, Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: structural, dielectric and ferromagnetic behavior. Phys. B Condens. Matter 430, 106–113 (2013)

    Article  Google Scholar 

  44. V.B. Kamble, S.V. Bhat, A.M. Umarji, Investigating thermal stability of structural defects and its effect on d0 ferromagnetism in undoped SnO2. J. Appl. Phys. 113, 244307 (2013)

    Article  Google Scholar 

  45. C.Z. Yuan, C.Z. Quan, P.R. Kun, W.S. Jie, Vacancy-induced ferromagnetism in SnO2 nanocrystals: a positron annihilation study. Chin. Phys. Lett. 30(2), 1–4 (2013)

    Google Scholar 

  46. S. Mehraj, M.S. Ansari, Alimuddin, Rutile type SnO2 thin films annealed at different temperature: structural, dielectric, impedance and ferromagnetic properties. Thin Solid Films 589, 57–65 (2015)

    Article  Google Scholar 

  47. S.E. Shirsath, B.G. Toksha, K.M. Jadhav, Structural and magnetic properties of In3þ substituted NiFe2O4. Mater. Chem. Phys. 117(1), 163–168 (2009)

    Article  Google Scholar 

  48. J.Q. Hu, Y. Bando, Q. Liu, D. Golberg, Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Funct. Mater. 13(6), 493–496 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant 51372002) and Zhejiang Provincial Natural Science Foundation of China under Grant No. LR16F040001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Lu.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10854-017-7544-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfiqar, Khan, R., Yuan, Y. et al. Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles. J Mater Sci: Mater Electron 28, 4625–4636 (2017). https://doi.org/10.1007/s10854-016-6101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6101-1

Keywords

Navigation