Skip to main content
Log in

Preparation, structure and microwave dielectric properties of 3MgO–Al2O3–3TiO2 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

3MgO–Al2O3–3TiO2 (MAT) ceramics were prepared by a conventional solid-state reaction method. The crystal structure, sintering behavior and microwave dielectric properties of ceramics were investigated using X-ray diffraction, scanning electron microscopy and network analyzer. MAT ceramics contained the coexistence of three phases, including MgAl2O4, MgTiO3 and MgTi2O5. The ceramics sintered at 1350 °C for 4 h presented excellent comprehensive performances with relative permittivity (ε r ) of 15.4, quality factor (Q × f) of 91,000 GHz and temperature coefficient of resonant frequency (τ f ) about −55.1 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Wang, H.F. Zhou, X.L. Chen, X.B. Liu, L. Fang, C. Wang et al., Crystal structure and optimized microwave dielectric properties (1−x)LiZn0.5Ti1.5O4xTiO2 ceramics for application in dielectric resonator. J. Mater. Sci.: Mater. Electron. 24(7), 2641–2645 (2013)

    Google Scholar 

  2. M. Guo, G. Dou, Y.X. Li, S.P. Gong, The improvement research on microwave dielectric properties of magnesium tungstate for LTCC. J. Mater. Sci.: Mater. Electron. 26(1), 608–612 (2015)

    Google Scholar 

  3. D. Zhou, H. Wang, L.X. Pang, X. Yao, Low-firing of BiSbO4 microwave dielectric ceramic with V2O5-CuO addition. Mater. Chem. Phys. 119(1), 149–152 (2010)

    Article  Google Scholar 

  4. R. Ubic, I.M. Reaney, W.E. Lee, Microwave dielectric solid-solution phase in system BaO–Ln2O3–TiO2 (Ln = lanthanide cation). Int. Mater. Rev. 43(5), 205–219 (1998)

    Article  Google Scholar 

  5. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 66(6), 421–423 (2006)

    Article  Google Scholar 

  6. S. Nomura, K. Toyama, K. Kaneta, Ba(Mg1/3Ta2/3)O3 ceramics with temperature- stable high dielectric constant and low microwave loss. Jpn. J. Appl. Phys. 21, 624–626 (1982)

    Article  Google Scholar 

  7. I.N. Jawahar, M.I. Santha, M.T. Sebastan, P. Mohanan, Microwave dielectric properties of MO–La2O3–TiO2 (M = Ca, Sr. Ba) ceramics. J. Mater. Res. 17(12), 3084–3088 (2002)

    Article  Google Scholar 

  8. D.W. Kim, B. park, J.H. Chung, K.S. Hong, Mixture behavior and microwave dielectric properties in the low-fired TiO2–CuO system. Jpn. J. Appl. Phys. 39(5A), 2696–2700 (2000)

    Article  Google Scholar 

  9. G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. J. Eur. Ceram. Soc. 27(8–9), 3063–3067 (2007)

    Article  Google Scholar 

  10. J. Zhang, R. Zuo, Low-temperature fired thermal-stable Li2TiO3-NiO microwave dielectric ceramics. J. Mater. Sci.: Mater. Electron. 27(8), 7962–7968 (2016)

    Google Scholar 

  11. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006)

    Google Scholar 

  12. K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, (1−x)MgAl2O4xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A Mater. Sci. Process. 81(4), 823–826 (2005)

    Article  Google Scholar 

  13. C.L. Huang, T.J. Yang, C.C. Huang, Low dielectric loss ceramics in the ZnAl2O4–TiO2 system as a τ f compensator. J. Am. Ceram. Soc. 92(1), 119–124 (2009)

    Article  Google Scholar 

  14. Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466(2), 203–217 (1999)

    Article  Google Scholar 

  15. H. Shin, H.K. Shin, H.S. Jung, S.Y. Cho, K.S. Hong, Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass. Mater. Res. Bull. 40(11), 2021–2028 (2005)

    Article  Google Scholar 

  16. J. Krupka, Precise measurements of the complex permittivity of dielectric materials at microwave frequencies. Mater. Chem. Phys. 79(2–3), 195–198 (2003)

    Article  Google Scholar 

  17. S.S.A. Jaroudi, A.U. Hamid, A.R.I. Mohammed, S. Saner, Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technol. 175(3), 115–121 (2007)

    Article  Google Scholar 

  18. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  Google Scholar 

  19. S.J. Penn, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80(7), 1885–1888 (2005)

    Article  Google Scholar 

  20. H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, Y.L. Wang, A new low loss spinel microwave dielectric ceramic. J. Eur. Ceram. Soc. 32(2), 261–265 (2012)

    Article  Google Scholar 

  21. W. Lei, W.Z. Lu, J.H. Zhu, X.H. Wang, Microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites. Mater. Lett. 61(19–20), 4066–4069 (2007)

    Article  Google Scholar 

  22. H. Kagata, R. Saito, H. Katsumura, Al2O3–MgO–ReO x (Re: Rare Earth)-based LTCC and its application to multilayer non-shrinkage substrate for microwave devices. J. Electroceram. 13(1–3), 277–280 (2004)

    Article  Google Scholar 

  23. P.V. Bijumon, M.T. Sebastian, P. Mohanan, Experimental investigations and three-dimensional transmission line matrix simulation of Ca5-x A x B2TiO12 (A = Mg, Zn, Ni, and Co; B = Nb and Ta) ceramic resonators. J. Appl. Phys. 98(12), 124105–124115 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos.1146009, 11664008 and 11364012), Natural Science Foundation of Guangxi (Nos.2015GXNSFDA139033, 2014GXNSFAA118312, 2013GXNSFAA019291 and 2014GXNSFAA118326), and Project of Outstanding Young Teachers’ Training in Higher Education Institutions of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhou, H., Wang, N. et al. Preparation, structure and microwave dielectric properties of 3MgO–Al2O3–3TiO2 ceramics. J Mater Sci: Mater Electron 28, 4565–4569 (2017). https://doi.org/10.1007/s10854-016-6092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6092-y

Keywords

Navigation