Skip to main content
Log in

Fabrication of Cu@Ag core–shell nanoparticles for nonlinear optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the preparation of the core–shell structured Cu@Ag nanoparticles by a simple wet chemical route at room temperature. The surface plasmon resonance band at 405 nm is indicative of the formation of Cu@Ag nanoparticles. The powder X-ray diffraction and energy dispersive X-ray analyses were carried out to elucidate the structure and chemical composition respectively. The morphological investigations made by electron microscopes revealed that the particles are spherical in shape with core–shell structures having size of about 50 nm. The X-ray photoelectron spectroscopy was performed to elucidate surface state composition of the core–shell structured nanoparticles based on the binding energies and confirmed the formation of Cu@Ag core–shell nanoparticles. The enhanced non-linear optical response of the Cu@Ag core–shell nanoparticles was demonstrated by z-scan experiment using He–Ne laser. This report provides a simple, economical and practical technology to fabricate Cu@Ag core–shell nanoparticles with enhanced nonlinear optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.-T. Chen, D. Ray, Y.-H. Peng, Y.-C. Hsu, Curr. Appl. Phys. 13, 1496 (2013)

    Article  Google Scholar 

  2. Z. Chen, D. Mochizuki, M.M. Maitani, Y. Wada, Nano Technol. 24, 265602 (2013)

    Google Scholar 

  3. M. Hari, S. Mathew, B. Nithyaja, S.A. Joseph, V.P.N. Nampoori, P. Radhakrishnan, Opt. Quant. Electron. 43, 49 (2012)

    Article  Google Scholar 

  4. M. Valodkar, S. Modi, A. Pal, S. Thakore, Mater. Res. Bull. 46, 384 (2011)

    Article  Google Scholar 

  5. M. Jose, M. Sakthivel, Mater. Lett. 117, 78 (2014)

    Article  Google Scholar 

  6. F.P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Nano Lett. 12, 5780 (2012)

    Article  Google Scholar 

  7. R. Ghosh Chaudhuri, S. Paria, Chem. Rev. 112, 2373 (2012)

    Article  Google Scholar 

  8. H.T. Hai, H. Takamura, J. Koike, J. Alloys Compd. 564, 71 (2013)

    Article  Google Scholar 

  9. M. Tsuji, S. Hikino, R. Tanabe, M. Matsunaga, Y. Sano, Cryst. Eng. Comm. 12, 3900 (2010)

    Article  Google Scholar 

  10. X. Xu, X. Luo, H. Zhuang, W. Li, B. Zhang, Mater. Lett. 57, 3987 (2003)

    Article  Google Scholar 

  11. V. Mancier, C. Rousse-Bertrand, J. Dille, J. Michel, P. Fricoteaux, Ultrason. Sonochem. 17, 690 (2010)

    Article  Google Scholar 

  12. M. Cazayous, C. Langlois, T. Oikawa, C. Ricolleau, A. Sacuto, Phys. Rev. B. 73, 113402 (2006)

    Article  Google Scholar 

  13. C.K. Kim, G.-J. Lee, M.K. Lee, C.K. Rhee, Powder Technol. 263, 1 (2014)

    Article  Google Scholar 

  14. C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen, H.-Y. Lee, Corros. Sci. 74, 123 (2013)

    Article  Google Scholar 

  15. D. Chen, J. Li, C. Shi, X. Du, N. Zhao, J. Sheng, S. Liu, Chem. Mater. 19, 3399 (2007)

    Article  Google Scholar 

  16. Z. Cheng, H. Zhong, J. Xu, X. Chu, Y. Song, M. Xu, H. Huang, Mater. Lett. 65, 3005 (2011)

    Article  Google Scholar 

  17. S. De, S. Mandal, Colloids Surf. A Physicochem. Eng. Aspects 421, 72 (2013)

    Article  Google Scholar 

  18. Y.-H. Peng, C.-H. Yang, K.-T. Chen, S.R. Popuri, C.-H. Lee, B.-S. Tang, Appl. Surf. Sci. 263, 38 (2012)

    Article  Google Scholar 

  19. K. Mallick, M.J. Witcomb, M.S. Scurrell, Eur. Polym. J. 42, 670 (2006)

    Article  Google Scholar 

  20. S. Mallick, P. Sanpui, S.S. Ghosh, A. Chattopadhyay, A. Paul, RSC Adv. 5, 12268 (2015)

    Article  Google Scholar 

  21. J. Zhao, D. Zhang, J. Zhao, J. Solid State Chem. 184, 2339 (2011)

    Article  Google Scholar 

  22. S. Petrovic, B. Salatic, D. Milovanovic, V. Lazovic, L. Zivkovic, M. Trtica, B. Jelenkovic, J. Opt. 17, 025402 (2015)

    Article  Google Scholar 

  23. J. Zhao, D. Zhang, X. Zhang, Surf. Interface Anal. 47, 529 (2015)

    Article  Google Scholar 

  24. R. Sivakami, S. Dhanuskodi, Appl. Surf. Sci. 351, 977 (2015)

    Article  Google Scholar 

  25. E.L. Falcao-Filho, C.B. de Araujo, J.J. Rodrigues, J. Opt. Soc. Am. B. 24, 2948 (2007)

    Article  Google Scholar 

  26. Y.H. Wang, S.J. Peng, J.D. Lu, R.W. Wang, Y.L. Mao, Y.G. Cheng, Vacuum 83, 408 (2009)

    Article  Google Scholar 

  27. Y.H. Wang, J.D. Lu, R.W. Wang, S.J. Peng, Y.L. Mao, Y.G. Cheng, Phys. B 403, 3399 (2008)

    Article  Google Scholar 

  28. M.H. Majles Ara, Z. Dehghani, R. Sahraei, G. Nabiyouni, Opt. Commun. 283, 1650 (2010)

    Article  Google Scholar 

  29. R. Zakaria, M.H. Mezher, W.Y. Chong, Appl. Phys. A 122, 664 (2016)

    Article  Google Scholar 

  30. T. Cesca, G. Pellegrini, V. Bello, C. Scian, P. Mazzoldi, P. Calvelli, G. Battaglin, G. Mattei, Nucl. Instrum. Methods Phys. Res. B 268, 3227 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthisabarimoorthi, A., Jose, M., Martin Britto Dhas, S.A. et al. Fabrication of Cu@Ag core–shell nanoparticles for nonlinear optical applications. J Mater Sci: Mater Electron 28, 4545–4552 (2017). https://doi.org/10.1007/s10854-016-6090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6090-0

Keywords

Navigation