Microstructure, phase structure and electrical properties of 0.954K1−x Na x NbO3–0.04Bi0.5Na0.5ZrO3–0.006BiFeO3 lead-free ceramics

  • Jian Ma
  • Bo Wu
  • Wenjuan Wu
  • Min Chen


In this work, 0.954K1−x Na x NbO3–0.04Bi0.5Na0.5ZrO3–0.006BiFeO3 (KN x N–BNZ–BF) lead-free ceramics were fabricated by conventional ceramic technique. The effect of K/Na ratio on microstructure, phase structure and electrical properties was systematically investigated. The orthorhombic-tetragonal phase transition temperature (T O–T) increases and rhombohedral–orthorhombic phase transition temperature (T R–O) drops simultaneously with increasing the Na content, leading to an R–O–T phase boundaries in the ceramics with 0.44 ≤ x ≤ 0.60. By tailoring their K/Na ratio and optimizing the sintering temperature, an enhanced electrical properties (e.g. d 33 ~ 438 pC/N, k p ~ 0.51, T c ~ 320 °C, ε r ~ 2304 and tan δ ~ 0.029) was obtained at the ceramics with x = 0.56 sintered at 1090 °C, which could be attributed to the preferably density as well as the R–O–T phase boundary nearer the room temperature. Therefore, we think that the KN x N–BNZ–BF ceramic is a promising candidate for piezoelectric devices.


Sinter Temperature BiFeO3 Phase Transition Temperature Piezoelectric Property Piezoelectric Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Project (Grant Nos. KYTZ201312 and J201220) Supported by the Scientific Research Foundation of CUIT, the Fundamental Research Funds for the Central Universities of Southwest University for Nationalities (No. 2014NZYQN11), the Foundation of Sichuan province science and technology support program, China (Grant No. GZ0198) and Scientific Research Project of Sichuan Provincial Department of Education (Grant No. 16ZA0216).


  1. 1.
    S. Zhang, R. Xia, T.R. Shrout, J. Electroceram. 19, 251 (2007)CrossRefGoogle Scholar
  2. 2.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971)Google Scholar
  3. 3.
    EU-Directive 2002/96/EC, Waste electrical and electronic equipment (WEEE). Off. J. Eur. Union 46(L37), 24 (2003)Google Scholar
  4. 4.
    EU-Directive 2002/95/EC, Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Off. J. Eur. Union 46(L37), 19 (2003)Google Scholar
  5. 5.
    B. Wu, C. Han, D.Q. Xiao, Z. Wang, J.G. Zhu, J.G. Wu, Mater. Res. Bull. 47(11), 3937 (2012)CrossRefGoogle Scholar
  6. 6.
    B. Wu, D.Q. Xiao, W.J. Wu, J.G. Zhu, Q. Cheng, J.G. Wu, Ceram. Int. 38(7), 5677 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  8. 8.
    B. Wu, D.Q. Xiao, J.G. Wu, Q. Gou, J.G. Zhu, J. Mater. Sci.: Mater. Electron. 26(4), 2323 (2015)Google Scholar
  9. 9.
    R.Z. Zuo, C. Ye, X.S. Fang, J. Phys. Chem. Solids 69, 230 (2008)CrossRefGoogle Scholar
  10. 10.
    B. Wu, D.Q. Xiao, J.G. Wu, Q. Gou, D.D. Mazhao, J.G. Zhu, Ferroelectrics 489(1), 129 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Wu, J.G. Wu, D.Q. Xiao, J.G. Zhu, Dalton Trans. 44(48), 21141 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115(7), 2559 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25(12), 2693 (2005)CrossRefGoogle Scholar
  14. 14.
    F.Z. Yao, K. Wang, W. Jo, J.F. Li, Adv. Funct. Mater. 26, 1217 (2016)CrossRefGoogle Scholar
  15. 15.
    W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, J. Am. Ceram. Soc. 94(12), 4317 (2011)CrossRefGoogle Scholar
  16. 16.
    N. Liu, K. Wang, J.F. Li, Z. Liu, J. Am. Ceram. Soc. 92(8), 1884 (2009)CrossRefGoogle Scholar
  17. 17.
    J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu, L. Wu, Y.H. Jiang, Appl. Phys. Lett. 91(25), 252907 (2007)CrossRefGoogle Scholar
  18. 18.
    D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, Funct. Mater. Lett. 3, 5 (2010)CrossRefGoogle Scholar
  19. 19.
    X.P. Wang, J.G. Wu, D.Q. Xiao, J.G. Zhu, X.J. Cheng, T. Zheng, B.Y. Zhang, X.J. Lou, X.J. Wang, J. Am. Chem. Soc. 136, 2905 (2014)CrossRefGoogle Scholar
  20. 20.
    K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Adv. Mater. 28, 8519 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Fu, D. Lin, Q. Zheng, X. Wu, C. Xu, Phys. Status Solidi (a) 209(11), 2299 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 91, 167 (2008)CrossRefGoogle Scholar
  23. 23.
    J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu, P. Yu, J. Appl. Phys. 103, 024102 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Wu, J.L. Zhang, C.L. Wang, J.C. Li, J. Appl. Phys. 103, 084116 (2008)CrossRefGoogle Scholar
  25. 25.
    Y.J. Dai, X.W. Zhang, K.P. Chen, Appl. Phys. Lett. 94, 042905 (2009)CrossRefGoogle Scholar
  26. 26.
    J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu, L. Wu, Appl. Phys. Lett. 91, 252907 (2007)CrossRefGoogle Scholar
  27. 27.
    L. Wu, J.L. Zhang, S.F. Shao, P. Zheng, C.L. Wang, Appl. Phys. Lett. 41, 035402 (2008)Google Scholar
  28. 28.
    V.J. Tennery, K.W. Hang, J. Appl. Phys. 39, 4749 (1968)CrossRefGoogle Scholar
  29. 29.
    M. Ahtee, A.M. Glazer, Acta Crystallogr. 32, 434 (1976)CrossRefGoogle Scholar
  30. 30.
    B.Y. Zhang, J.G. Wu, B. Wu, J.G. Wu, D.Q. Xiao, J.G. Zhu, J. Alloys Compd. 525, 53 (2012)CrossRefGoogle Scholar
  31. 31.
    J.G. Wu, X.P. Wang, X.T. Zheng, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, X.J. Lou, J. Appl. Phys. 115(11), 114104 (2014)CrossRefGoogle Scholar
  32. 32.
    S.S. Feng, D.Q. Xiao, J.G. Wu, F.X. Li, M. Xiao, J.G. Zhu, J. Electroceram. 34(2–3), 142 (2015)CrossRefGoogle Scholar
  33. 33.
    B.P. Zhang, J.F. Li, K. Wang, J. Am. Ceram. Soc. 89, 1605 (2006)CrossRefGoogle Scholar
  34. 34.
    E. Rigaard, T. Wurlitzer, J. Eur. Ceram. Soc. 25, 2701 (2005)CrossRefGoogle Scholar
  35. 35.
    J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2(4), 257 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sichuan Province Key Laboratory of Information Materials and Devices ApplicationChengdu University of Information TechnologyChengduPeople’s Republic of China
  2. 2.Physics DepartmentSouthwest University for NationalitiesChengduPeople’s Republic of China

Personalised recommendations