Skip to main content
Log in

Crystal chemistry and dielectric properties of (Bi1.5Zn0.4M0.1)(Nb1.5Zn0.5)O7 (M = Sr, Ca, Mn, Zn) pyrochlore oxides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As a potentially attractive candidate of LTCC material, Bi1.5Zn1.0Nb1.5O7 ceramics with substituted Zn2+ were synthesized by a conventional mixed oxide route. For the first time, the effect of the chemical ionic substitution of Sr, Ca and Mn cations on the microstructure, bond energy and dielectric properties of bismuth-based pyrochlores was discussed systematically for Bi1.5Zn1.0Nb1.5O7. Rietveld refinement was carried to analyze the structure variation of the sintered specimens. The solid solubility limits of in the Bi1.5Zn1.0Nb1.5O7 system with Sr, Ca and Mn incorportion were discussed. The samples presented single cubic phase that were used to study the dielectric properties of Bi1.5Zn1.0Nb1.5O7 based on the crystallization and microstructure. The dielectric constant εr was mainly related to relative density not the ionic polarizability. The relative density and the dielectric constant εr showed the same decreased trend as a function of different ionic dopant. And the change of the grain size and grain boundaries had a significant influence on the loss tangent tanδ in this system. The A-site cation bond energy of (Bi1.5Zn0.4M0.1)(Nb1.5Zn0.5)O7 (M = Sr, Ca, Mn, Zn) ceramics was performed to explain the relationship between the temperature coefficient of the dielectric constant τε and the crystal microstructure in a new way. With the decrease of |τε| values as a function of the substitution, the Zn–O bond energy of A-site became strong. This indicated that the (Bi1.5Zn0.4M0.1)(Nb1.5Zn0.5)O7 system tended to be stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.X. Pang, H. Wang, D. Zhou, X. Yao, Effect of Ag on the sintering and dielectric properties behavior of Bi1.5ZnNb1.5O7 ceramics. J. Alloys Compd. 493, 626–629 (2010)

    Article  Google Scholar 

  2. W. Liu, H. Wang, K. Li, X. Yao, Effect of Ag on the sintering and dielectric properties behavior of Bi1.5ZnNb1.5O7 ceramics. J. Alloys Compd. 491, 218–222 (2010)

    Article  Google Scholar 

  3. C.C. Khawa, K.B. Tan, C.K. Lee, A.R. West, Phase equilibria and electrical properties of pyrochlore and zirconolite phases in the Bi2O3–ZnO–Ta2O5 system. J. Eur. Ceram. Soc. 32, 671–680 (2012)

    Article  Google Scholar 

  4. Y. Liu, R.L. Withers, H.B. Nguyen, K. Elliott, Q.J. Ren, Z.H. Chen, Displacive disorder and dielectric relaxation in the stoichiometric bismuth-containing pyrochlores, Bi2MIIINbO7 (M = In and Sc). J. Solid State Chem. 182, 2748–2755 (2009)

    Article  Google Scholar 

  5. R.L. Withers, T.R. Welberry, A.K. Larsson, Y. Liu, L. Norén, H. Rundlöf, F.J. Brink, Local crystal chemistry, induced strain and short range order in the cubic pyrochlore (Bi1.5−αZn0.5−β)(Zn0.5−γNb1.5−δ)O(7−1.5α−β−γ−2.5δ)(BZN). J. Solid State Chem. 177, 231–244 (2004)

    Article  Google Scholar 

  6. S.M. Zanetti, S.A. Da Silva, G.P. Thim, A chemical route for the synthesis of cubic bismuth zinc niobate pyrochlore nanopowders. J. Solid State Chem. 177, 4546–4551 (2004)

    Article  Google Scholar 

  7. V. Krayzman, I. Levin, J.C. Woicik, Local structure of displacively disordered pyrochlore dielectrics. Chem. Mater. 19, 932–936 (2007)

    Article  Google Scholar 

  8. D.P. Cann, C.A. Randall, T.R. Shrout, Investigation of the dielectric properties of bismuth pyrochlores. Solid State Commun 100, 529–534 (1996)

    Article  Google Scholar 

  9. J. Banys, S. Rudys, M. Ivanov, J. Li, H. Wang, Dielectric properties of cubic bismuth based pyrochlores containing lithium and fluorine. J. Eur. Ceram. Soc. 30, 385–388 (2010)

    Article  Google Scholar 

  10. K.B. Tan, C.C. Khaw, C.K. Lee, Z. Zainal, G.C. Miles, Structures and solid solution mechanisms of pyrochlore phases in the systems Bi2O3–ZnO–(Nb, Ta)2O5. J. Alloys Compd. 508, 457–462 (2010)

    Article  Google Scholar 

  11. M.C. Wu, Y.C. Huang, W.F. Su, Silver cofirable Bi1.5Zn0.92Nb1.5O6.92 microwave ceramics containing CuO-based dopants. Mater. Chem. Phys. 100, 391–394 (2006)

    Article  Google Scholar 

  12. J. Petzelt, S. Kamba, Submillimetre and infrared response of microwave materials: extrapolation to microwave properties. Mater. Chem. Phys. 79, 175–180 (2003)

    Article  Google Scholar 

  13. K. Sudheendran, K.C.J. Raju, M.V. Jacob, Microwave dielectric properties of Ti-substituted Bi2(Zn2/3Nb4/3)O7 pyrochlores at cryogenic temperatures. J. Am. Ceram. Soc. 92, 1268–1271 (2009)

    Article  Google Scholar 

  14. H.L. Du, X. Yao, Dielectric relaxation characteristics of bismuth zinc niobate pyrochlores containing titanium. Phys. B Condens. Matter 324, 121–126 (2002)

    Article  Google Scholar 

  15. C.J. Nino, T.L. Michael, A.R. Clive, Dielectric relaxation in Bi2O3–ZnO–Nb2O5 cubic pyrochlore. J. Appl. Phys. 89, 4512–4516 (2001)

    Article  Google Scholar 

  16. R.T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976)

    Article  Google Scholar 

  17. B.J. Wuensch, K.W. Eberman, C. Heremans, E.M. Ku, P. Onnerud, E.M. Yeo, J.D. Jorgensen, Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ion. 129, 111–133 (2000)

    Article  Google Scholar 

  18. Y.X. Pang, X. Bao, Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Eur. Ceram. Soc. 23, 1697–1704 (2003)

    Article  Google Scholar 

  19. R. Jenkins, R.L. Snyder, Introduction to X-Ray Power Diffractometry (Wiley, New York, 1996)

    Book  Google Scholar 

  20. D. Shihua, Y. Xi, M. Yu, L. Puling, Microwave dielectric properties of (Bi1−xRx)NbO4 ceramics (R = Ce, Nd, Dy, Er). J. Eur. Ceram. Soc. 26, 2003–2005 (2006)

    Article  Google Scholar 

  21. R.D. SruNNoN, G.R. RossvraN, Dielectric constants of silicate garnets and the oxide additivity rule. Am. Mineral. 77, 94–100 (1992)

    Google Scholar 

  22. Robert D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  Google Scholar 

  23. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, New York, 2003)

    Book  Google Scholar 

  24. R.T. Sanderson, Multiple and single bond energies in inorganic molecules. J. Inorg. Nucl. Chem. 30, 375–393 (1968)

    Article  Google Scholar 

  25. R.T. Sanderson, Chemical Bonds and Energy (Academic Press, New York, 1971)

    Google Scholar 

  26. R.T. Sanderson, Electronegativity and bond energy. J. Am. Ceram. Soc. 105, 2259–2261 (1983)

    Google Scholar 

  27. Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L.X., Zhang, S. & Lv, X.S. Crystal chemistry and dielectric properties of (Bi1.5Zn0.4M0.1)(Nb1.5Zn0.5)O7 (M = Sr, Ca, Mn, Zn) pyrochlore oxides. J Mater Sci: Mater Electron 28, 4388–4395 (2017). https://doi.org/10.1007/s10854-016-6066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6066-0

Keywords

Navigation