Green synthesis and characterization of NaEuTi2O6 nanoparticles and its photocatalyst application

  • S. Mostafa Hosseinpour-Mashkani
  • Ali Sobhani-Nasab


In the current study, an attempt is made to synthesize NaEuTi2O6 nanoparticles via a green route with the aid of sodium nitrate, europium nitrate, and tetra-n-butyl titanate in an aqueous solution environment. Besides, the effect of several carbohydrates such as glucose, galactose, lactose and starch on the morphology and particles size of products was investigated. In addition, decolonization of methyl orange azo dye was performed in order to investigate NaEuTi2O6 nanoparticles photocatalysis application. The nanoparticles structure has been elucidated by X-ray diffraction analysis, scanning electron microscope, X-ray energy dispersive spectroscopy, and vibrating sample magnetometer. Photocatalysis results reveal that maximum degradation (90%) was occurred under UV light irradiation. DRS used to study the optical properties of NaEuTi2O6 nanoparticles.


Lactose Photocatalytic Activity Photocatalytic Degradation Methyl Orange Energy Dispersive Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to council of University of Arak for providing financial support to undertake this work.


  1. 1.
    V. Tajer-Kajinebaf, H. Sarpoolaky, J. Ultrafine Grained Nanostruct. Mater. 46, 39 (2013)Google Scholar
  2. 2.
    M. Behpour, M. Mehrzad, S.M. Hosseinpour-Mashkani, J. Nanostruct. 5, 183 (2015)Google Scholar
  3. 3.
    S.A. Khorramie, M.A. Baghchesara, R. Lotfi, ShM Dehagi, Int. J. Nano Dimens. 2(4), 261 (2012)Google Scholar
  4. 4.
    F. Beshkar, M. Salavati-Niasari, J. Nanostruct. 5, 17 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Behpour, S.M. Ghoreishi, M. Salavati-Niasari, N. Mohammadi, J. Nanostruct. 2, 317 (2012)Google Scholar
  6. 6.
    C. Karunakaran, R. Dhanalakshmi, Radiat. Phys. Chem. 78, 8 (2009)CrossRefGoogle Scholar
  7. 7.
    S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 153, 412 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Farhadi, F. Siadatnasab, K. Jahanara, J. Nanostruct. 3, 227 (2013)Google Scholar
  9. 9.
    M. Behpour, M. Chakeri, J. Nanostruct. 2, 227 (2012)Google Scholar
  10. 10.
    V. Taghvaei, A. Habibi-Yangjeh, M. Behboudnia, Int. J. Nanosci. Nanotechnol. 7, 94 (2011)Google Scholar
  11. 11.
    M. Enhessari, M. Kargar-Razi, P. Moarefi, A. Parviz, J. Nanostruct. 2, 119 (2012)Google Scholar
  12. 12.
    S. Khaleghi, J. Nanostruct. 2, 157 (2012)Google Scholar
  13. 13.
    M.C. Knapp, P.M. Woodward, J. Solid State Chem. 179, 1076 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Feraru, A.I. Borhan, P. Samoila, C. Mita, S. Cucu-Man, A.R. Iordan, M.N. Palamaru, J. Photochem. Photobiol. A 307–308, 1 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Iwakura, H. Einaga, Y. Teraoka, Inorg. Chem. 49, 11362 (2010)CrossRefGoogle Scholar
  16. 16.
    W. Yan, W. Caihua, W. Linlin, H. Qiaoyan, Z. Xiaobo, C. Xiuhua, T. Kaibin, RSC Adv. 4, 4047 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Teraoka, M. Weib, S. Kagawa, J. Mater. Chem. 8, 2323 (1998)CrossRefGoogle Scholar
  18. 18.
    M.W. Lufaso, P.W. Barnes, P.M. Woodward, Acta Crystallogr. Sect. B: Struct. Sci. 62, 397 (2006)CrossRefGoogle Scholar
  19. 19.
    S. Kurra, N.K. Veldurthi, J.R. Reddy, C.S. Reddy, M. Vithal, J. Mater. Sci.: Mater. Electron. 27, 4149 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Mostafa Hosseinpour-Mashkani
    • 1
  • Ali Sobhani-Nasab
    • 1
  1. 1.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations