Skip to main content
Log in

Effect of pH on electrical and magnetic properties of Al3Fe5O12 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Al3Fe5O12 (AIG) nanopowders were synthesized at different pH using aqueous co-precipitation method. The effect of pH on the phase formation of AIG is characterized using XRD, TEM and TG/DTA. From Scherrer formula the average crystallite sizes were found to be 20, 25, 28 and 32 nm for pH 9, 10, 11 and 12. From TEM micrographs, the particle sizes of the powders were found to be 15, 21, 25 and 30 nm for pH 9, 10, 11 and 12, respectively. It is found that as the pH of the solution increase the particle size also increases. It is clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The obtained nanopowders were further sintered at 900 °C/4 h using conventional sintering method. The phase formation is completed at 800 °C which is correlated with TG/DTA. X-ray photoelectron spectroscopy is used to study the electronic state of the AIG sample. The average grain size of the samples is found to be ~55 nm. Room temperature magnetization measurements established these compounds to be soft magnetic. The room temperature dielectric and magnetic properties (ε′, ε″, µ′ and µ″) of AIG was studied over a wide range of frequency 1 MHz–1.8 GHz. The dielectric constant was found to decrease with increasing frequency. With increase of pH both ε′ and µ′ increased. The Curie temperature was confirmed to be from 560 K (~287 °C) based on the dielectric anomaly observed when these measurements were carried out over a temperature range of 300–600 K. The ferromagnetic resonance linewidth is found to be increasing from 77 to 142 Oe and the effective saturation magnetization (4πMeff) is found to be higher compare to effective saturation magnetization (4πMs) by VSM. This finding provides a new route for AIG materials could be useful for various applications for spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Wu, A. Hoffmann, Recent Advances in Magnetic Insulators-from Spintronics to Microwave Applications, in Solid State Physics, vol. 64 (Academic Press, Cambridge, 2013)

    Google Scholar 

  2. A. Hoffmann, S.D. Bader, Phys. Rev. Appl. 4, 047001 (2015)

    Article  Google Scholar 

  3. G.J. Long, F. Grandjean, Inorg. Chem. 55, 3413 (2016)

    Article  Google Scholar 

  4. C. Du, H. Wang, P. Chris Hammel, F. Yang, J. Appl. Phys. 117, 172603 (2015)

    Article  Google Scholar 

  5. A. Hamadeh, O. d’Allivy Kelly, C. Hahn, H. Meley, R. Bernard, A.H. Molpeceres, V.V. Naletov, M. Viret, A. Anane, V. Cros, S.O. Demokritov, J.L. Prieto, M. Munoz, G. de Loubens, O. Klein, Phys. Rev. Lett. 113, 197203 (2014)

    Article  Google Scholar 

  6. J. Sklenar, W. Zhang, M.B. Jungfleisch, W. Jiang, H. Chang, J.E. Pearson, M. Wu, J.B. Ketterson, A. Hoffmann, Phys. Rev. B Condens. Matter Mater. Phys. 92, 174406 (2015)

    Article  Google Scholar 

  7. M.B. Jungfleisch, W. Zhang, J. Sklenar, J. Ding, W. Jiang, H. Chang, F.Y. Fradin, J.E. Pearson, J.B. Ketterson, V. Novosad, M. Wu, A. Hoffmann, Phys. Rev. Lett. 116, 057601 (2016)

    Article  Google Scholar 

  8. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Phys. 11, 453 (2015)

    Article  Google Scholar 

  9. J. Ding, M. Kostylev, A.O. Adeyeye, Appl. Phys. Lett. 100, 073114 (2012)

    Article  Google Scholar 

  10. V.E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, S.O. Demokritov, Nat. Mater. 11, 1028 (2012)

    Google Scholar 

  11. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Science 349, 283 (2015)

    Article  Google Scholar 

  12. V. Singh, V.K. Rai, S. Watanabe, T.K. Gundu Rao, I. Ledoux-Rak, H.-Y. Kwak, Appl. Phys. B 101, 631 (2010)

    Article  Google Scholar 

  13. V.D. Murumkar, K.B. Modi, K.M. Jadhav, G.K. Bichile, R.G. Kulkarni, Mater. Lett. 32, 281 (1997)

    Article  Google Scholar 

  14. H.I. Won, H.H. Nersisyan, C.W. Won, K.H. Lee, Mater. Chem. Phys. 129, 955 (2011)

    Article  Google Scholar 

  15. S. Geller, M.A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957)

    Article  Google Scholar 

  16. K. Praveena, S. Srinath, J. Magn. Magn. Mater. 349, 45 (2014)

    Article  Google Scholar 

  17. K. Sadhana, S.R. Murthy, K. Praveena, Mater. Sci. Semicond. Process. 34, 305 (2015)

    Article  Google Scholar 

  18. D. Vandormael, F. Grandjean, D. Hautot, G.J. Long, J. Phys. Condens. Matter 13, 1759 (2001)

    Article  Google Scholar 

  19. X. Guo, A.H. Tavakoli, S. Sutton, R.K. Kukkadapu, L. Qi, A. Lanzirotti, M. Newville, M. Asta, A. Navrotsky, Chem. Mater. 26, 1133 (2014)

    Article  Google Scholar 

  20. B.E. Warren, X-ray Diffraction (Addison-Wesley, Reading, 1969)

    Google Scholar 

  21. K. Praveena, K. Sadhana, S. Srinath, S. Ramana Murthy, in AIP Conference Proceedings, vol. 1447 (2012), p. 291

  22. K. Sadhana, S.R. Murthy, K. Praveena, J. Mater. Sci. Mater. Electron. 25, 5130 (2014)

    Article  Google Scholar 

  23. P. Ayub, V.R. Palkar, S. Chatopadhyay, M. Multani, Phys. Rev. B 51, 6135 (1995)

    Article  Google Scholar 

  24. N. Yahya, R.A.H. Masoud, H. Daud, A.A. Aziz, H.M. Zaid, Am. J. Eng. Appl. Sci. 2, 76 (2009)

    Article  Google Scholar 

  25. P. Ayub, M. Multani, M. Barma, V.R. Palkar, R. Vijayaraghavan, J. Phys. C 21, 2229 (1988)

    Article  Google Scholar 

  26. L. Xifeng, H. Wang, Y. Yang, T. Liu, J. Mater. Sci. Technol. 27, 245 (2011)

    Article  Google Scholar 

  27. G.C. Allen, K.R. Hallam, Appl. Surf. Sci. 93, 25 (1996)

    Article  Google Scholar 

  28. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441 (2008)

    Article  Google Scholar 

  29. P. Vaqueiro, M.P. Crosnier-Lopez, M.A. Lopez-Quintela, J. Solid State Chem. 126, 161 (1996)

    Article  Google Scholar 

  30. A. Potdevin, G. Chadeyron, D. Boyer, R. Mahiou, J. Non-Cryst, Solids 352, 2510 (2006)

    Google Scholar 

  31. R.A. Mc Currie, Ferromagnetic Materials: Structure and Properties (Academic Press, University of Michigan, Cambridge, 1954), p. 352

    Google Scholar 

  32. Y.F. Chen, K.T. Wu, Y.D. Yao, C.H. Peng, K.L. You, W.S. Tse, Microelectron. Eng. 81, 329 (2005)

    Article  Google Scholar 

  33. T. Kim, S. Nasu, M. Shima, J. Nanopart. Res. 9, 737 (2007)

    Article  Google Scholar 

  34. R.D. Sanchez, J. Rivas, P. Vaqueiro, J. Magn. Magn. Mater. 247, 92 (2002)

    Article  Google Scholar 

  35. X.Z. Guo, B.G. Ravi, P.S. Devi, J.C. Hanson, J. Margolies, R.J. Gambino, J.B. Parise, S. Sampath, J. Magn. Magn. Mater. 295, 145 (2005)

    Article  Google Scholar 

  36. R. Metselaar, M.A.H. Huyberts, J. Phys. Chem. Solids 34, 2257 (1973)

    Article  Google Scholar 

  37. J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959)

    Google Scholar 

  38. J. Smit, H.P.J. Wijn, Les Ferrites (Dunod, Paris, 1961)

    Google Scholar 

  39. A.K. Singh, T.C. Goel, R.G. Mendiratta, J. Appl. Phys. 91, 6626 (2002)

    Article  Google Scholar 

  40. N. Rezlescu, E. Rezlescu, Phys. Status Solidi A 23, 575 (1974)

    Article  Google Scholar 

  41. J.T.S. Irvine, A. Huanosta, R. Velenzuela, A.R. West, J. Am. Ceram. Soc. 73, 729 (1990)

    Article  Google Scholar 

  42. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  43. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990), p. 346

    Google Scholar 

  44. F.G. Brockman, R.P. White, J. Am. Ceram. Soc. 54, 183 (1971)

    Article  Google Scholar 

  45. L.G. Uitert, Proc. IRE 44, 1294 (1956)

    Article  Google Scholar 

  46. K. Ishino, Y. Narumiya, Am. Ceram. Bull. 66, 1469 (1987)

    Google Scholar 

  47. D.A. Dimitrov, G.M. Wysin, Phys. Rev. B 51, 11947 (1995)

    Article  Google Scholar 

  48. V.P. Shilov, J.C. Bacri, F. Gazeau, F. Gendron, R. Perzynski, Y.L. Raikher, J. Appl. Phys. 85, 6642 (1999)

    Article  Google Scholar 

  49. A. Verma, R. Chatterjee, J. Magn. Magn. Mater. 306, 313 (2006)

    Article  Google Scholar 

  50. L.T. Rabinkin, Z.I. Novikova, Ferrites, Izv. Acad. Nauk (USSR, Minsk, 1960), p. 146

    Google Scholar 

  51. B. Bhoi, N. Venkataramani, R.P.R.C. Aiyar, S. Prasad, IEEE Trans. Magn. 49, 990 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Dr K. Praveena acknowledges the Ministry of Science and Technology of Republic of China under Grant Nos. MOST 105-2811-M-003-018 and MOST 105-2112-M-003-013-MY3 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Praveena or K. Sadhana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveena, K., Matteppanavar, S., Liu, HL. et al. Effect of pH on electrical and magnetic properties of Al3Fe5O12 nanoparticles. J Mater Sci: Mater Electron 28, 4179–4191 (2017). https://doi.org/10.1007/s10854-016-6038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6038-4

Keywords

Navigation