Effect of pH on electrical and magnetic properties of Al3Fe5O12 nanoparticles



Al3Fe5O12 (AIG) nanopowders were synthesized at different pH using aqueous co-precipitation method. The effect of pH on the phase formation of AIG is characterized using XRD, TEM and TG/DTA. From Scherrer formula the average crystallite sizes were found to be 20, 25, 28 and 32 nm for pH 9, 10, 11 and 12. From TEM micrographs, the particle sizes of the powders were found to be 15, 21, 25 and 30 nm for pH 9, 10, 11 and 12, respectively. It is found that as the pH of the solution increase the particle size also increases. It is clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The obtained nanopowders were further sintered at 900 °C/4 h using conventional sintering method. The phase formation is completed at 800 °C which is correlated with TG/DTA. X-ray photoelectron spectroscopy is used to study the electronic state of the AIG sample. The average grain size of the samples is found to be ~55 nm. Room temperature magnetization measurements established these compounds to be soft magnetic. The room temperature dielectric and magnetic properties (ε′, ε″, µ′ and µ″) of AIG was studied over a wide range of frequency 1 MHz–1.8 GHz. The dielectric constant was found to decrease with increasing frequency. With increase of pH both ε′ and µ′ increased. The Curie temperature was confirmed to be from 560 K (~287 °C) based on the dielectric anomaly observed when these measurements were carried out over a temperature range of 300–600 K. The ferromagnetic resonance linewidth is found to be increasing from 77 to 142 Oe and the effective saturation magnetization (4πMeff) is found to be higher compare to effective saturation magnetization (4πMs) by VSM. This finding provides a new route for AIG materials could be useful for various applications for spintronics.


Ferrite Sinter Temperature Vibrate Sample Magnetometer Magnetocrystalline Anisotropy Ferromagnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr K. Praveena acknowledges the Ministry of Science and Technology of Republic of China under Grant Nos. MOST 105-2811-M-003-018 and MOST 105-2112-M-003-013-MY3 for financial support.

Supplementary material

10854_2016_6038_MOESM1_ESM.docx (113 kb)
Supplementary material 1 (DOCX 113 kb)


  1. 1.
    M. Wu, A. Hoffmann, Recent Advances in Magnetic Insulators-from Spintronics to Microwave Applications, in Solid State Physics, vol. 64 (Academic Press, Cambridge, 2013)Google Scholar
  2. 2.
    A. Hoffmann, S.D. Bader, Phys. Rev. Appl. 4, 047001 (2015)CrossRefGoogle Scholar
  3. 3.
    G.J. Long, F. Grandjean, Inorg. Chem. 55, 3413 (2016)CrossRefGoogle Scholar
  4. 4.
    C. Du, H. Wang, P. Chris Hammel, F. Yang, J. Appl. Phys. 117, 172603 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Hamadeh, O. d’Allivy Kelly, C. Hahn, H. Meley, R. Bernard, A.H. Molpeceres, V.V. Naletov, M. Viret, A. Anane, V. Cros, S.O. Demokritov, J.L. Prieto, M. Munoz, G. de Loubens, O. Klein, Phys. Rev. Lett. 113, 197203 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Sklenar, W. Zhang, M.B. Jungfleisch, W. Jiang, H. Chang, J.E. Pearson, M. Wu, J.B. Ketterson, A. Hoffmann, Phys. Rev. B Condens. Matter Mater. Phys. 92, 174406 (2015)CrossRefGoogle Scholar
  7. 7.
    M.B. Jungfleisch, W. Zhang, J. Sklenar, J. Ding, W. Jiang, H. Chang, F.Y. Fradin, J.E. Pearson, J.B. Ketterson, V. Novosad, M. Wu, A. Hoffmann, Phys. Rev. Lett. 116, 057601 (2016)CrossRefGoogle Scholar
  8. 8.
    A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Phys. 11, 453 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Ding, M. Kostylev, A.O. Adeyeye, Appl. Phys. Lett. 100, 073114 (2012)CrossRefGoogle Scholar
  10. 10.
    V.E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, S.O. Demokritov, Nat. Mater. 11, 1028 (2012)Google Scholar
  11. 11.
    W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Science 349, 283 (2015)CrossRefGoogle Scholar
  12. 12.
    V. Singh, V.K. Rai, S. Watanabe, T.K. Gundu Rao, I. Ledoux-Rak, H.-Y. Kwak, Appl. Phys. B 101, 631 (2010)CrossRefGoogle Scholar
  13. 13.
    V.D. Murumkar, K.B. Modi, K.M. Jadhav, G.K. Bichile, R.G. Kulkarni, Mater. Lett. 32, 281 (1997)CrossRefGoogle Scholar
  14. 14.
    H.I. Won, H.H. Nersisyan, C.W. Won, K.H. Lee, Mater. Chem. Phys. 129, 955 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Geller, M.A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957)CrossRefGoogle Scholar
  16. 16.
    K. Praveena, S. Srinath, J. Magn. Magn. Mater. 349, 45 (2014)CrossRefGoogle Scholar
  17. 17.
    K. Sadhana, S.R. Murthy, K. Praveena, Mater. Sci. Semicond. Process. 34, 305 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Vandormael, F. Grandjean, D. Hautot, G.J. Long, J. Phys. Condens. Matter 13, 1759 (2001)CrossRefGoogle Scholar
  19. 19.
    X. Guo, A.H. Tavakoli, S. Sutton, R.K. Kukkadapu, L. Qi, A. Lanzirotti, M. Newville, M. Asta, A. Navrotsky, Chem. Mater. 26, 1133 (2014)CrossRefGoogle Scholar
  20. 20.
    B.E. Warren, X-ray Diffraction (Addison-Wesley, Reading, 1969)Google Scholar
  21. 21.
    K. Praveena, K. Sadhana, S. Srinath, S. Ramana Murthy, in AIP Conference Proceedings, vol. 1447 (2012), p. 291Google Scholar
  22. 22.
    K. Sadhana, S.R. Murthy, K. Praveena, J. Mater. Sci. Mater. Electron. 25, 5130 (2014)CrossRefGoogle Scholar
  23. 23.
    P. Ayub, V.R. Palkar, S. Chatopadhyay, M. Multani, Phys. Rev. B 51, 6135 (1995)CrossRefGoogle Scholar
  24. 24.
    N. Yahya, R.A.H. Masoud, H. Daud, A.A. Aziz, H.M. Zaid, Am. J. Eng. Appl. Sci. 2, 76 (2009)CrossRefGoogle Scholar
  25. 25.
    P. Ayub, M. Multani, M. Barma, V.R. Palkar, R. Vijayaraghavan, J. Phys. C 21, 2229 (1988)CrossRefGoogle Scholar
  26. 26.
    L. Xifeng, H. Wang, Y. Yang, T. Liu, J. Mater. Sci. Technol. 27, 245 (2011)CrossRefGoogle Scholar
  27. 27.
    G.C. Allen, K.R. Hallam, Appl. Surf. Sci. 93, 25 (1996)CrossRefGoogle Scholar
  28. 28.
    T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441 (2008)CrossRefGoogle Scholar
  29. 29.
    P. Vaqueiro, M.P. Crosnier-Lopez, M.A. Lopez-Quintela, J. Solid State Chem. 126, 161 (1996)CrossRefGoogle Scholar
  30. 30.
    A. Potdevin, G. Chadeyron, D. Boyer, R. Mahiou, J. Non-Cryst, Solids 352, 2510 (2006)Google Scholar
  31. 31.
    R.A. Mc Currie, Ferromagnetic Materials: Structure and Properties (Academic Press, University of Michigan, Cambridge, 1954), p. 352Google Scholar
  32. 32.
    Y.F. Chen, K.T. Wu, Y.D. Yao, C.H. Peng, K.L. You, W.S. Tse, Microelectron. Eng. 81, 329 (2005)CrossRefGoogle Scholar
  33. 33.
    T. Kim, S. Nasu, M. Shima, J. Nanopart. Res. 9, 737 (2007)CrossRefGoogle Scholar
  34. 34.
    R.D. Sanchez, J. Rivas, P. Vaqueiro, J. Magn. Magn. Mater. 247, 92 (2002)CrossRefGoogle Scholar
  35. 35.
    X.Z. Guo, B.G. Ravi, P.S. Devi, J.C. Hanson, J. Margolies, R.J. Gambino, J.B. Parise, S. Sampath, J. Magn. Magn. Mater. 295, 145 (2005)CrossRefGoogle Scholar
  36. 36.
    R. Metselaar, M.A.H. Huyberts, J. Phys. Chem. Solids 34, 2257 (1973)CrossRefGoogle Scholar
  37. 37.
    J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959)Google Scholar
  38. 38.
    J. Smit, H.P.J. Wijn, Les Ferrites (Dunod, Paris, 1961)Google Scholar
  39. 39.
    A.K. Singh, T.C. Goel, R.G. Mendiratta, J. Appl. Phys. 91, 6626 (2002)CrossRefGoogle Scholar
  40. 40.
    N. Rezlescu, E. Rezlescu, Phys. Status Solidi A 23, 575 (1974)CrossRefGoogle Scholar
  41. 41.
    J.T.S. Irvine, A. Huanosta, R. Velenzuela, A.R. West, J. Am. Ceram. Soc. 73, 729 (1990)CrossRefGoogle Scholar
  42. 42.
    C.G. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  43. 43.
    L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990), p. 346Google Scholar
  44. 44.
    F.G. Brockman, R.P. White, J. Am. Ceram. Soc. 54, 183 (1971)CrossRefGoogle Scholar
  45. 45.
    L.G. Uitert, Proc. IRE 44, 1294 (1956)CrossRefGoogle Scholar
  46. 46.
    K. Ishino, Y. Narumiya, Am. Ceram. Bull. 66, 1469 (1987)Google Scholar
  47. 47.
    D.A. Dimitrov, G.M. Wysin, Phys. Rev. B 51, 11947 (1995)CrossRefGoogle Scholar
  48. 48.
    V.P. Shilov, J.C. Bacri, F. Gazeau, F. Gendron, R. Perzynski, Y.L. Raikher, J. Appl. Phys. 85, 6642 (1999)CrossRefGoogle Scholar
  49. 49.
    A. Verma, R. Chatterjee, J. Magn. Magn. Mater. 306, 313 (2006)CrossRefGoogle Scholar
  50. 50.
    L.T. Rabinkin, Z.I. Novikova, Ferrites, Izv. Acad. Nauk (USSR, Minsk, 1960), p. 146Google Scholar
  51. 51.
    B. Bhoi, N. Venkataramani, R.P.R.C. Aiyar, S. Prasad, IEEE Trans. Magn. 49, 990 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan
  2. 2.Department of PhysicsBangalore UniversityBangaloreIndia
  3. 3.Department of PhysicsPresidency UniversityBangaloreIndia
  4. 4.Department of Physics, University College of ScienceOsmania UniversitySaifabadIndia

Personalised recommendations