Skip to main content

Advertisement

Log in

On the temperature dependency and reversibility of sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The temperature dependency and reversibility of the sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid (Ag-MPA) molecules, used in the printed temperature sensor, has been investigated. The microstructural evaluation, the FTIR spectra and thermal property analyses of the Ag-MPA films suggest co-existence of both weakly adsorbed as well as firmly adsorbed MPA molecules on the surface of Ag nanoparticles. The weakly adsorbed MPA molecules was to a great extent be desorbed and removed from the surfaces of silver nanoparticles when heated up to 180 °C for the first time. While the firmly adsorbed MPA molecules remain on the surfaces of silver nanoparticles even at higher temperature. Yet the firmly adsorbed MPA molecules are likely having gone through a transformation circle from/to the gauche and trans conformations in correspondence to a heating and cooling cycle, which results in temperature dependent and reversible sheet resistance. The MPA molecules in the gauche conformation are more densely packed on the surface of silver nanoparticles and can hinder the electron’s movability within the Ag-MPA film. While in the trans conformation with lower ‘surface space’ coverage by the MPA molecules, electrons move more freely within the film. Based on the temperature dependent nature, the fully printed temperature sensor using the Ag-MPA nanoparticles as the functional layer was made, of which the highest sensitivity is 5.12% °C−1 at 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10, 3515–3535 (2014)

    Article  Google Scholar 

  2. W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, Paper-based nanosilver conductive ink. J. Mater. Sci. Mater. Electron. 24, 628–634 (2013)

    Article  Google Scholar 

  3. B.Y. Ahn, E.B. Duoss, M.J. Motala, X.Y. Guo, S.I. Park, Y.J. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009)

    Article  Google Scholar 

  4. J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446–8453 (2010)

    Article  Google Scholar 

  5. T. Yamada, K. Fukuhara, K. Matsuoka, H. Minemawari, J. Tsutsumi, N. Fukuda, K. Aoshima, S. Arai, Y. Makita, H. Kubo, T. Enomoto, T. Togashi, M. Kurihara, T. Hasegawa, Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution. Nat. Commun. 7, 9 (2016)

    Article  Google Scholar 

  6. J.K. Jiang, B. Bao, M.Z. Li, J.Z. Sun, C. Zhang, Y. Li, F.Y. Li, X. Yao, Y.L. Song, Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 28, 1420–1426 (2016)

    Article  Google Scholar 

  7. X.Q. Zhou, W. Li, M.L. Wu, S. Tang, D.Z. Liu, Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks. Appl. Surf. Sci. 292, 537–543 (2014)

    Article  Google Scholar 

  8. P. Kanninen, C. Johans, J. Merta, K. Kontturi, Influence of ligand structure on the stability and oxidation of copper nanoparticles. J. Colloid Interface Sci. 318, 88–95 (2008)

    Article  Google Scholar 

  9. J. Natsuki, T. Abe, Synthesis of pure colloidal silver nanoparticles with high electroconductivity for printed electronic circuits: the effect of amines on their formation in aqueous media. J. Colloid Interface Sci. 359, 19–23 (2011)

    Article  Google Scholar 

  10. A.J. Lovinger, Development of electrical conduction in silver-filled epoxy adhesives. J. Adhes. 10, 1–15 (2008)

    Article  Google Scholar 

  11. G.R. Ruschau, S. Yoshikawa, R.E. Newnham, Resistivities of conductive composites. J. Appl. Phys. 72, 953–959 (1992)

    Article  Google Scholar 

  12. L.X. Mo, D.Z. Liu, W. Li, L.H. Li, L.C. Wang, X.Q. Zhou, Effects of dodecylamine and dodecanethiol on the conductive properties of nano-Ag films. Appl. Surf. Sci. 257, 5746–5753 (2011)

    Article  Google Scholar 

  13. F.C. Wu, D.Z. Liu, T.Y. Wang, W. Li, X.Q. Zhou, Different surface properties of l-arginine functionalized silver nanoparticles and their influence on the conductive and adhesive properties of nanosilver films. J. Mater. Sci. Mater. Electron. 26, 6781–6786 (2015)

    Article  Google Scholar 

  14. J. Liu, H. Ji, S. Wang, M. Li, The low temperature exothermic sintering of formic acid treated Cu nanoparticles for conductive ink. J. Mater. Sci: Mater. Electron. (2016). doi:10.1007/s10854-016-5476-3

    Google Scholar 

  15. P. Pulkkinen, J. Shan, K. Leppanen, A. Kansakoski, A. Laiho, M. Jarn, H. Tenhu, Poly(ethylene imine) and tetraethylenepentamine as protecting agents for metallic copper nanoparticles. ACS Appl. Mater. Interfaces 1, 519–525 (2009)

    Article  Google Scholar 

  16. L.X. Mo, D.Z. Liu, X.Q. Zhou, L.H. Li, Preparation and conductive mechanism of the ink-jet printed nanosilver films for flexible display, in: 2009 2nd International Congress on Image and Signal Processing, CISP’09, October 17, 2009–October 19, 2009, (IEEE Computer Society, Tianjin University of Technology, Tianjin, 2009)

  17. Y.Q. Yong, T. Yonezawa, M. Matsubara, H. Tsukamoto, The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. J. Mater. Chem. C 3, 5890–5895 (2015)

    Article  Google Scholar 

  18. S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4, 1943–1948 (2010)

    Article  Google Scholar 

  19. M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 5, 3354–3359 (2011)

    Article  Google Scholar 

  20. L.X. Mo, J. Ran, L. Yang, Y. Fang, Q.B. Zhai, L.H. Li, Flexible transparent conductive films combining flexographic printed silver grids with CNT coating. Nanotechnology 27, 065202 (2016)

    Article  Google Scholar 

  21. H. Shirai, M.T. Nguyen, Y. Ishida, T. Yonezawa, A new approach for additive-free room temperature sintering of conductive patterns using polymer-stabilized Sn nanoparticles. J. Mater. Chem. C 4, 2228–2234 (2016)

    Article  Google Scholar 

  22. B. Reiser, L. Gonzalez-Garcia, I. Kanelidis, J.H.M. Maurer, T. Kraus, Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics. Chem. Sci. 7, 4190–4196 (2016)

    Article  Google Scholar 

  23. I. Jung, K. Shin, N.R. Kim, H.M. Lee, Synthesis of low-temperature-processable and highly conductive Ag ink by a simple ligand modification: the role of adsorption energy. J. Mater. Chem. C 1, 1855–1862 (2013)

    Article  Google Scholar 

  24. W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, Preparation and conductive mechanism of copper nanoparticles ink. J. Mater. Sci. Mater. Electron. 24, 5175–5182 (2013)

    Article  Google Scholar 

  25. S. Bhanushali, P. Ghosh, A. Ganesh, W.L. Cheng, 1D copper nanostructures: progress, challenges and opportunities. Small 11, 1232–1252 (2015)

    Article  Google Scholar 

  26. W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6, 1622–1628 (2014)

    Article  Google Scholar 

  27. Z.L. Zhang, X.Y. Zhang, Z.Q. Xin, M.M. Deng, Y.Q. Wen, Y.L. Song, Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 22, 425601 (2011)

    Article  Google Scholar 

  28. A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)

    Article  Google Scholar 

  29. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005)

    Article  Google Scholar 

  30. L.L. Rouhana, M.D. Moussallem, J.B. Schlenoff, Adsorption of short-chain thiols and disulfides onto gold under defined mass transport conditions: coverage, kinetics, and mechanism. J. Am. Chem. Soc. 133, 16080–16091 (2011)

    Article  Google Scholar 

  31. Y. Taniguchi, T. Takishita, T. Kawai, T. Nakashima, End-to-end self-assembly of semiconductor nanorods in water by using an amphiphilic surface design. Angew. Chem. Int. Edit. 55, 2083–2086 (2016)

    Article  Google Scholar 

  32. R.K. Mendes, R.F. Carvalhal, L.T. Kubota, Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development. J. Electroanal. Chem. 612, 164–172 (2008)

    Article  Google Scholar 

  33. J.B. Shein, L.M.H. Lai, P.K. Eggers, M.N. Paddon-Row, J.J. Gooding, Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25, 11121–11128 (2009)

    Article  Google Scholar 

  34. Y. Li, Y. Wu, B.S. Ong, Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J. Am. Chem. Soc. 127, 3266–3267 (2005)

    Article  Google Scholar 

  35. N.R. Jana, X. Peng, Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 125, 14280–14281 (2003)

    Article  Google Scholar 

  36. C.N. Chen, C.P. Chen, T.Y. Dong, T.C. Chang, M.C. Chen, H.T. Chen, I.G. Chen, Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature. Acta Mater. 60, 5914–5924 (2012)

    Article  Google Scholar 

  37. S.Y. Kang, K. Kim, Comparative study of dodecanethiol-derivatized silver nanoparticles prepared in one-phase and two-phase systems. Langmuir 14, 226–230 (1998)

    Article  Google Scholar 

  38. H. Hiramatsu, F.E. Osterloh, A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mat. 16, 2509–2511 (2004)

    Article  Google Scholar 

  39. A. Kudelski, Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper: comparative studies by surface-enhanced Raman scattering. J. Raman Spectrosc. 34, 853–862 (2003)

    Article  Google Scholar 

  40. K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, Y. Li, C.P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168–175 (2005)

    Article  Google Scholar 

  41. D.S. Sidhaye, B.L.V. Prasad, Melting characteristics of superlattices of alkanethiol-capped gold nanoparticles: the “excluded” story of excess thiol. Chem. Mat. 22, 1680–1685 (2010)

    Article  Google Scholar 

  42. N. Sandhyarani, M.P. Antony, G.P. Selvam, T. Pradeep, Melting of monolayer protected cluster superlattices. J. Chem. Phys. 113, 9794–9803 (2000)

    Article  Google Scholar 

  43. A. Kudelski, Raman and electrochemical characterization of 2-mercaptoethanesulfonate monolayers on silver: a comparison with monolayers of 3-mercaptopropionic acid. Langmuir 18, 4741–4747 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61474144), Beijing Municipal Commission of Education (KZ201510015001), 2011 Collaborative innovation centre (04190116008/002) and Beijing Innovation Ability Improving Program (TJSHG201310015016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Mo or Luhai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, L., Yang, L., Wang, Z. et al. On the temperature dependency and reversibility of sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid. J Mater Sci: Mater Electron 28, 4035–4043 (2017). https://doi.org/10.1007/s10854-016-6017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6017-9

Keywords

Navigation