On the temperature dependency and reversibility of sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid

  • Lixin MoEmail author
  • Li Yang
  • Zhenguo Wang
  • Qingbin Zhai
  • Zhengbo Li
  • Luhai LiEmail author


The temperature dependency and reversibility of the sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid (Ag-MPA) molecules, used in the printed temperature sensor, has been investigated. The microstructural evaluation, the FTIR spectra and thermal property analyses of the Ag-MPA films suggest co-existence of both weakly adsorbed as well as firmly adsorbed MPA molecules on the surface of Ag nanoparticles. The weakly adsorbed MPA molecules was to a great extent be desorbed and removed from the surfaces of silver nanoparticles when heated up to 180 °C for the first time. While the firmly adsorbed MPA molecules remain on the surfaces of silver nanoparticles even at higher temperature. Yet the firmly adsorbed MPA molecules are likely having gone through a transformation circle from/to the gauche and trans conformations in correspondence to a heating and cooling cycle, which results in temperature dependent and reversible sheet resistance. The MPA molecules in the gauche conformation are more densely packed on the surface of silver nanoparticles and can hinder the electron’s movability within the Ag-MPA film. While in the trans conformation with lower ‘surface space’ coverage by the MPA molecules, electrons move more freely within the film. Based on the temperature dependent nature, the fully printed temperature sensor using the Ag-MPA nanoparticles as the functional layer was made, of which the highest sensitivity is 5.12% °C−1 at 200 °C.


Silver Nanoparticles Differential Scanning Calorimetry Curve Sheet Resistance Silver Particle Metallic Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (61474144), Beijing Municipal Commission of Education (KZ201510015001), 2011 Collaborative innovation centre (04190116008/002) and Beijing Innovation Ability Improving Program (TJSHG201310015016).


  1. 1.
    A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10, 3515–3535 (2014)CrossRefGoogle Scholar
  2. 2.
    W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, Paper-based nanosilver conductive ink. J. Mater. Sci. Mater. Electron. 24, 628–634 (2013)CrossRefGoogle Scholar
  3. 3.
    B.Y. Ahn, E.B. Duoss, M.J. Motala, X.Y. Guo, S.I. Park, Y.J. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446–8453 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Yamada, K. Fukuhara, K. Matsuoka, H. Minemawari, J. Tsutsumi, N. Fukuda, K. Aoshima, S. Arai, Y. Makita, H. Kubo, T. Enomoto, T. Togashi, M. Kurihara, T. Hasegawa, Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution. Nat. Commun. 7, 9 (2016)CrossRefGoogle Scholar
  6. 6.
    J.K. Jiang, B. Bao, M.Z. Li, J.Z. Sun, C. Zhang, Y. Li, F.Y. Li, X. Yao, Y.L. Song, Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 28, 1420–1426 (2016)CrossRefGoogle Scholar
  7. 7.
    X.Q. Zhou, W. Li, M.L. Wu, S. Tang, D.Z. Liu, Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks. Appl. Surf. Sci. 292, 537–543 (2014)CrossRefGoogle Scholar
  8. 8.
    P. Kanninen, C. Johans, J. Merta, K. Kontturi, Influence of ligand structure on the stability and oxidation of copper nanoparticles. J. Colloid Interface Sci. 318, 88–95 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Natsuki, T. Abe, Synthesis of pure colloidal silver nanoparticles with high electroconductivity for printed electronic circuits: the effect of amines on their formation in aqueous media. J. Colloid Interface Sci. 359, 19–23 (2011)CrossRefGoogle Scholar
  10. 10.
    A.J. Lovinger, Development of electrical conduction in silver-filled epoxy adhesives. J. Adhes. 10, 1–15 (2008)CrossRefGoogle Scholar
  11. 11.
    G.R. Ruschau, S. Yoshikawa, R.E. Newnham, Resistivities of conductive composites. J. Appl. Phys. 72, 953–959 (1992)CrossRefGoogle Scholar
  12. 12.
    L.X. Mo, D.Z. Liu, W. Li, L.H. Li, L.C. Wang, X.Q. Zhou, Effects of dodecylamine and dodecanethiol on the conductive properties of nano-Ag films. Appl. Surf. Sci. 257, 5746–5753 (2011)CrossRefGoogle Scholar
  13. 13.
    F.C. Wu, D.Z. Liu, T.Y. Wang, W. Li, X.Q. Zhou, Different surface properties of l-arginine functionalized silver nanoparticles and their influence on the conductive and adhesive properties of nanosilver films. J. Mater. Sci. Mater. Electron. 26, 6781–6786 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Liu, H. Ji, S. Wang, M. Li, The low temperature exothermic sintering of formic acid treated Cu nanoparticles for conductive ink. J. Mater. Sci: Mater. Electron. (2016). doi: 10.1007/s10854-016-5476-3 Google Scholar
  15. 15.
    P. Pulkkinen, J. Shan, K. Leppanen, A. Kansakoski, A. Laiho, M. Jarn, H. Tenhu, Poly(ethylene imine) and tetraethylenepentamine as protecting agents for metallic copper nanoparticles. ACS Appl. Mater. Interfaces 1, 519–525 (2009)CrossRefGoogle Scholar
  16. 16.
    L.X. Mo, D.Z. Liu, X.Q. Zhou, L.H. Li, Preparation and conductive mechanism of the ink-jet printed nanosilver films for flexible display, in: 2009 2nd International Congress on Image and Signal Processing, CISP’09, October 17, 2009–October 19, 2009, (IEEE Computer Society, Tianjin University of Technology, Tianjin, 2009)Google Scholar
  17. 17.
    Y.Q. Yong, T. Yonezawa, M. Matsubara, H. Tsukamoto, The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. J. Mater. Chem. C 3, 5890–5895 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4, 1943–1948 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 5, 3354–3359 (2011)CrossRefGoogle Scholar
  20. 20.
    L.X. Mo, J. Ran, L. Yang, Y. Fang, Q.B. Zhai, L.H. Li, Flexible transparent conductive films combining flexographic printed silver grids with CNT coating. Nanotechnology 27, 065202 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Shirai, M.T. Nguyen, Y. Ishida, T. Yonezawa, A new approach for additive-free room temperature sintering of conductive patterns using polymer-stabilized Sn nanoparticles. J. Mater. Chem. C 4, 2228–2234 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Reiser, L. Gonzalez-Garcia, I. Kanelidis, J.H.M. Maurer, T. Kraus, Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics. Chem. Sci. 7, 4190–4196 (2016)CrossRefGoogle Scholar
  23. 23.
    I. Jung, K. Shin, N.R. Kim, H.M. Lee, Synthesis of low-temperature-processable and highly conductive Ag ink by a simple ligand modification: the role of adsorption energy. J. Mater. Chem. C 1, 1855–1862 (2013)CrossRefGoogle Scholar
  24. 24.
    W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, Preparation and conductive mechanism of copper nanoparticles ink. J. Mater. Sci. Mater. Electron. 24, 5175–5182 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Bhanushali, P. Ghosh, A. Ganesh, W.L. Cheng, 1D copper nanostructures: progress, challenges and opportunities. Small 11, 1232–1252 (2015)CrossRefGoogle Scholar
  26. 26.
    W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6, 1622–1628 (2014)CrossRefGoogle Scholar
  27. 27.
    Z.L. Zhang, X.Y. Zhang, Z.Q. Xin, M.M. Deng, Y.Q. Wen, Y.L. Song, Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 22, 425601 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)CrossRefGoogle Scholar
  29. 29.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005)CrossRefGoogle Scholar
  30. 30.
    L.L. Rouhana, M.D. Moussallem, J.B. Schlenoff, Adsorption of short-chain thiols and disulfides onto gold under defined mass transport conditions: coverage, kinetics, and mechanism. J. Am. Chem. Soc. 133, 16080–16091 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Taniguchi, T. Takishita, T. Kawai, T. Nakashima, End-to-end self-assembly of semiconductor nanorods in water by using an amphiphilic surface design. Angew. Chem. Int. Edit. 55, 2083–2086 (2016)CrossRefGoogle Scholar
  32. 32.
    R.K. Mendes, R.F. Carvalhal, L.T. Kubota, Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development. J. Electroanal. Chem. 612, 164–172 (2008)CrossRefGoogle Scholar
  33. 33.
    J.B. Shein, L.M.H. Lai, P.K. Eggers, M.N. Paddon-Row, J.J. Gooding, Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25, 11121–11128 (2009)CrossRefGoogle Scholar
  34. 34.
    Y. Li, Y. Wu, B.S. Ong, Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J. Am. Chem. Soc. 127, 3266–3267 (2005)CrossRefGoogle Scholar
  35. 35.
    N.R. Jana, X. Peng, Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 125, 14280–14281 (2003)CrossRefGoogle Scholar
  36. 36.
    C.N. Chen, C.P. Chen, T.Y. Dong, T.C. Chang, M.C. Chen, H.T. Chen, I.G. Chen, Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature. Acta Mater. 60, 5914–5924 (2012)CrossRefGoogle Scholar
  37. 37.
    S.Y. Kang, K. Kim, Comparative study of dodecanethiol-derivatized silver nanoparticles prepared in one-phase and two-phase systems. Langmuir 14, 226–230 (1998)CrossRefGoogle Scholar
  38. 38.
    H. Hiramatsu, F.E. Osterloh, A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mat. 16, 2509–2511 (2004)CrossRefGoogle Scholar
  39. 39.
    A. Kudelski, Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper: comparative studies by surface-enhanced Raman scattering. J. Raman Spectrosc. 34, 853–862 (2003)CrossRefGoogle Scholar
  40. 40.
    K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, Y. Li, C.P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168–175 (2005)CrossRefGoogle Scholar
  41. 41.
    D.S. Sidhaye, B.L.V. Prasad, Melting characteristics of superlattices of alkanethiol-capped gold nanoparticles: the “excluded” story of excess thiol. Chem. Mat. 22, 1680–1685 (2010)CrossRefGoogle Scholar
  42. 42.
    N. Sandhyarani, M.P. Antony, G.P. Selvam, T. Pradeep, Melting of monolayer protected cluster superlattices. J. Chem. Phys. 113, 9794–9803 (2000)CrossRefGoogle Scholar
  43. 43.
    A. Kudelski, Raman and electrochemical characterization of 2-mercaptoethanesulfonate monolayers on silver: a comparison with monolayers of 3-mercaptopropionic acid. Langmuir 18, 4741–4747 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Beijing Engineering Research Center of Printed ElectronicsBeijing Institute of Graphic CommunicationBeijingPeople’s Republic of China
  2. 2.Innventia ABStockholmSweden
  3. 3.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations