Solventless synthesis of m-LaVO4 photocatalyst for the degradation of methylene blue and textile effluent

  • V. Sivakumar
  • R. Suresh
  • K. Giribabu
  • V. Narayanan


Lanthanum vanadate (LaVO4) nanoplates with monoclinic (m) phase were synthesized by a facile solventless method. Lanthanum nitrate and ammonium metavanadate was used as precursors in this method. X-ray diffraction pattern reveals the monoclinic phase of LaVO4 (m-LaVO4). In addition, average grain size and lattice parameters were also calculated. Fourier transform infrared (FT-IR) analysis confirms the presence of La–O and V–O bonds in the sample. Optical property of m-LaVO4 nanoplates was estimated by DRS UV–visible and photoluminescence spectroscopy. HR-TEM (high resolution-transmission electron microscopy) analysis predicts the formation of LaVO4 nanoplates. Furthermore, m-LaVO4 nanoparticles were utilized as photocatalyst for the photodegradation of methylene blue (MB) dye under visible light illumination. m-LaVO4 photocatalyst showed substantial efficiency for the photodegradation of textile effluent (TE) within 120 min of visible light irradiation.


Methylene Blue Photocatalytic Activity Photocatalytic Degradation Visible Light Irradiation NH4VO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



V. Sivakumar wishes to thank Orchid chemicals and pharmaceuticals limited, Chennai for providing XRD, FTIR and UV–visible spectroscopic facility. The authors acknowledge the SEM and HR-TEM facility provided by the National Centre for Nanoscience and Nanotechnology, University of Madras, Tamil Nadu, India.


  1. 1.
    C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206 (2010)CrossRefGoogle Scholar
  2. 2.
    M.H. Mashkani, M. Ramezani, A.S. Nasab, M.E. Zare, J. Mater. Sci. Mater. Electron. 26, 6086 (2015)CrossRefGoogle Scholar
  3. 3.
    S.M.H. Mashkani, M. Maddahfar, A.S. Nasab, J. Electron. Mater. 45, 3612 (2016)CrossRefGoogle Scholar
  4. 4.
    S.M.H. Mashkani, M. Maddahfar, A.S. Nasab, J. Mater. Sci. Mater. Electron. 27, 474 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Jing, W. Zhou, G. Tian, H. Fu, Chem. Soc. Rev. 42, 9509 (2013)CrossRefGoogle Scholar
  6. 6.
    P. Cai, S.M. Zhou, D.K. Ma, S.N. Liu, W. Chen, S.M. Huang, Nano Micro Lett. 7, 183 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, M. Shao, S. Liu, Z. Zhang, H. Lin, Cryst. Eng. Comm. 14, 8033 (2012)CrossRefGoogle Scholar
  8. 8.
    G. Wang, Q. Peng, Y. Li, Acc. Chem. Res. 44, 322 (2011)CrossRefGoogle Scholar
  9. 9.
    B. Bulbul, S. Beyaz, Mater. Chem. Phys. 173, 200 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Chen, M. Wu, C. Xiao, Y. Yu, X. Liu, G. Qiu, J. Colloid Interface Sci. 443, 80 (2015)CrossRefGoogle Scholar
  11. 11.
    N. Wang, W. Chen, Q. Zhang, Y. Dai, Mater. Lett. 62, 109 (2008)CrossRefGoogle Scholar
  12. 12.
    L. Tian, R. Zhao, J. Wang, Q. Sun, L. Chen, Q. Xiao, S. Liu, Mater. Lett. 156, 101 (2015)CrossRefGoogle Scholar
  13. 13.
    W. Fan, X. Song, S. Sun, X. Zhao, J. Solid State Chem. 180, 284 (2007)CrossRefGoogle Scholar
  14. 14.
    J. Liu, W. Chen, X. Liu, K. Zhou, Y. Li, Nano Res. 1, 46 (2008)CrossRefGoogle Scholar
  15. 15.
    V. Tamilmani, K.J. Sreeram, B.U. Nair, RSC Adv. 5, 82513 (2015)CrossRefGoogle Scholar
  16. 16.
    B. Shao, Q. Zhao, N. Guo, Y. Jia, W. Lv, M. Jiao, W. Lü, H. You, Cryst. Eng. Comm. 16, 152 (2014)CrossRefGoogle Scholar
  17. 17.
    V. Sivakumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, V. Narayanan, J. Mater. Sci. Mater. Electron. 25, 1485 (2014)CrossRefGoogle Scholar
  18. 18.
    F. Chaochao, L. Guangshe, Z. Minglei, Y. Liusai, Z. Jing, L. Liping, Inorg. Chem. 51, 5869 (2012)CrossRefGoogle Scholar
  19. 19.
    J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)CrossRefGoogle Scholar
  20. 20.
    C. Yu, M. Yu, C. Li, C. Zhang, P. Yang, J. Lin, Cryst. Growth Des. 9, 783 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Ma, Q. Wu, Y. Ding, J. Nanopart. Res. 10, 775 (2008)CrossRefGoogle Scholar
  22. 22.
    V.P. Filonenko, M. Sundberg, P.E. Werner, I.P. Zibrov, Acta Crystallogr. Sect. B Struct. Sci. 60, 375 (2004)CrossRefGoogle Scholar
  23. 23.
    O.Y. Khyzhun, T. Strunskus, W. Grunert, C. Woll, J. Electron Spectrosc. Relat. Phenom. 149, 45 (2005)CrossRefGoogle Scholar
  24. 24.
    X. Lin, L.L. Yu, L.N. Yan, Q.F. Guan, Y.S. Yan, H. Zhao, Acta Phys. Chim. Sin. 29, 1771 (2013)Google Scholar
  25. 25.
    C.W. Zou, X.D. Yan, D.A. Patterson, E.A.C. Emanuelsson, J.M. Bian, W. Gao, Cryst. Eng. Commun. 12, 691 (2010)CrossRefGoogle Scholar
  26. 26.
    R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, A. Stephen, V. Narayanan, J. Alloys Compd. 598, 151 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Mentus, D. Jeli, V. Grudi, J. Therm. Anal. Calorim. 90, 393 (2007)CrossRefGoogle Scholar
  28. 28.
    J. Zhang, J. Shi, J. Tan, X. Wang, M. Gong, Cryst. Eng. Comm. 12, 1079 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Xia, L. Zhang, G. Pan, P. Qian, Z. Ni, Phys. Chem. Chem. Phys. 17, 5345 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Umrao, P. Sharma, A. Bansal, R. Sinha, R.K. Singh, A. Srivastava, J. Phys. Condens. Matter 24, 395005 (2012)CrossRefGoogle Scholar
  31. 31.
    M.R. Bayati, J. Ding, Y.F. Lee, R.J. Narayan, J. Narayan, H. Zhou, S.J. Pennycook, RSC Adv. 5, 51790 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. Sivakumar
    • 1
    • 2
  • R. Suresh
    • 3
  • K. Giribabu
    • 4
  • V. Narayanan
    • 1
  1. 1.Department of Inorganic Chemistry, School of Chemical SciencesUniversity of MadrasChennaiIndia
  2. 2.Research and Development CentreOrchid Chemicals and Pharmaceuticals LimitedChennaiIndia
  3. 3.Department of Analytical and Inorganic ChemistryUniversity of ConcepcionConcepciónChile
  4. 4.CSIR Central Electrochemical Research Institute—Chennai UnitCSIR-Madras ComplexTaramani, ChennaiIndia

Personalised recommendations