Dielectric properties and microstructures of Ta-doped BaTiO3–(Bi0.5Na0.5)TiO3 ceramics for X9R applications

  • Zhengbo Shen
  • Xiaohui Wang
  • Longtu Li


Ta-doped 0.90BaTiO3–0.10(Bi0.5Na0.5)TiO3 ceramics were successfully prepared by conventional solid-state reaction method and studied to satisfy super-broad temperature stability. The effects of Ta2O5 doping on the dielectric properties and microstructures were thoroughly investigated. Ta plays an important role in the formation of core–shell structure because of chemical inhomogeneity, which gives rise to the weak temperature dependence of dielectric properties. The samples with the additon of 1.5 mol% Ta2O5 satisfy the X9R specification, exhibiting an optimum dielectric behavior of ε r  ~ 2100, tanδ ~ 1.6% at room temperature, which is a promising candidate material for X9R MLCC applications.


BaTiO3 Energy Dispersive Spectroscopy Shell Structure TiO3 Ceramic Weak Temperature Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by Ministry of Sciences and Technology of China through National Basic Research Program of China (973 Program 2015CB654604), National Natural Science Foundation of China for Creative Research Groups (Grant No. 51221291), National Natural Science Foundation of China (Grant No. 51272123), and also supported by CBMI Construction Co., Ltd. Thanks Beijing National Center for Electron Microscopy for the observation of TEM.


  1. 1.
    M.R. Werner, W.R. Fahrner, IEEE Trans. Ind. Electron. 48, 249 (2001)CrossRefGoogle Scholar
  2. 2.
    R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, IEEE Trans. Electron. Packag. Manuf. 27, 164 (2004)CrossRefGoogle Scholar
  3. 3.
    S.F. Wang, G.O. Dayton, J. Am. Ceram. Soc. 82, 2677 (1999)CrossRefGoogle Scholar
  4. 4.
    W.H. Lee, C.Y. Su, J. Am. Ceram. Soc. 90, 3345 (2007)CrossRefGoogle Scholar
  5. 5.
    G. Yao, X. Wang, H. Gong, H. Wen, L. Li, Jpn. J. Appl. Phys. 50, 1502 (2011)CrossRefGoogle Scholar
  6. 6.
    J.B. Lim, S. Zhang, T.R. Shrout, Electron. Mater. Lett. 7, 71 (2011)CrossRefGoogle Scholar
  7. 7.
    T. Wang, H. Hao, M. Liu et al., J. Am. Ceram. Soc. 98, 690 (2015)CrossRefGoogle Scholar
  8. 8.
    N. Raengthon, H.J. Brown-Shaklee, G.L. Brennecka, D.P. Cann, J. Mater. Sci. 48, 2245 (2013)CrossRefGoogle Scholar
  9. 9.
    S.F. Wang, J.H. Li, Y.F. Hsu, Y.C. Wu, Y.C. Lai, M.H. Chen, J. Eur. Ceram. Soc. 33, 1793 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Zeb, S.J. Milne, J. Eur. Ceram. Soc. 34, 3159 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, S. Gao, B. Zhang, J. Mater. Sci. Mater. Electron. 26, 2709 (2015)CrossRefGoogle Scholar
  12. 12.
    N. Zhang, L. Li, J. Chen, J. Yu, Mater. Lett. 138, 228 (2015)CrossRefGoogle Scholar
  13. 13.
    N. Zhang, L. Li, J. Chen, Y. Liu, J. Yu, Ceram. Int. 41, 4805 (2015)CrossRefGoogle Scholar
  14. 14.
    S.F. Wang, Y.F. Hsu, Y.W. Hung, Y.X. Liu, Appl. Sci. 5, 1221 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Li, M. Wang, Y. Liu, J. Chen, N. Zhang, Ceram. Int. 40, 1105 (2014)CrossRefGoogle Scholar
  16. 16.
    L. Li, D. Guo, W. Xia et al., J. Am. Ceram. Soc. 95, 2107 (2012)CrossRefGoogle Scholar
  17. 17.
    Y. Guofeng, W. Xiaohui, W. Yunyi, L. Longtu, J. Am. Ceram. Soc. 95, 614 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Sun, H. Liu, H. Hao, L. Zhang, S. Zhang, Ceram. Int. 41, 931 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Li, J. Chen, N. Zhang, Y. Liu, J. Yu, J. Mater. Sci. Mater. Electron. 26, 84 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Guofeng, W. Xiaohui, Z. Yichi, S. Zhengbo, L. Longtu, J. Am. Ceram. Soc. 95, 3525 (2012)CrossRefGoogle Scholar
  21. 21.
    Z.B. Shen, X.H. Wang, D.S. Song, L.T. Li, Adv. Appl. Ceram. 115(7), 435–442 (2016)CrossRefGoogle Scholar
  22. 22.
    D. Hennings, G. Rosenstein, J. Am. Ceram. Soc. 67, 249 (1984)CrossRefGoogle Scholar
  23. 23.
    D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)CrossRefGoogle Scholar
  24. 24.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110 (2009)CrossRefGoogle Scholar
  25. 25.
    N. Hirose, J. Skakle, A. West, J. Electroceram. 3, 233 (1999)CrossRefGoogle Scholar
  26. 26.
    K. Datta, K. Roleder, P.A. Thomas, J. Appl. Phys. 106, 123512 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations