Processing of crack-free high density polycrystalline LiTaO3 ceramics

  • Ching-Fong Chen
  • Geoff L. Brennecka
  • Graham King
  • Eric L. Tegtmeier
  • Terry Holesinger
  • Jacob Ivy
  • Pin Yang


This work has successfully achieved high density (99.9%) polycrystalline LiTaO3. The keys to the high density without cracking were the use of LiF-assisted densification to maintain fine grain size as well as the presence of secondary lithium aluminate phases as grain growth inhibitors. The average grain size of the hot pressed polycrystalline LiTaO3 is less than 5 μm, limiting residual stresses caused by the anisotropic thermal expansion. Dilatometry results clearly indicate liquid phase sintering via the added LiF sintering aid. Efficient liquid phase sintering allows densification during low temperature hot pressing. Electron microscopy confirmed the high-density microstructure. Rietveld analysis of neutron diffraction data revealed the presence of LiAlO2 and LiAl5O8 minority phases and negligible substitutional defect incorporation in LiTaO3.


Residual Stress Liquid Phase Sinter LiTaO3 LiAlO2 Precision Impedance Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Robert Reinovsky, program manager of LANL ADX Office C3 Science Campaign, for the funding support. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.


  1. 1.
    A.M. Glass, Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3. Phys. Rev. 172(2), 564–571 (1968)CrossRefGoogle Scholar
  2. 2.
    V. Gopalan, K. L. Schepler, V. Dielorf, I. Biaggio, in The Handbook of Photonics, ed. by M.C. Gupta, J. Ballato. Chapter 6: Ferroelectric Materials, 2nd edn (CRC Press, 2006), pp. 1–53Google Scholar
  3. 3.
    C.B. Roundy, R.L. Byer, Sensitive LiTaO3 pyroelectric detector. J. Appl. Phys. 44, 929–931 (1973)CrossRefGoogle Scholar
  4. 4.
    Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy. Appl. Phys. Lett. 81(23), 4401–4403 (2002)CrossRefGoogle Scholar
  5. 5.
    V. Gopalan, V. Dierolf, D.A. Scrymgeour, Defect-domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 2007(37), 449–489 (2007)CrossRefGoogle Scholar
  6. 6.
    L. Tian, V. Gopalan, L. Galambos, Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration. Appl. Phys. Lett. 85(19), 4445–4447 (2004)CrossRefGoogle Scholar
  7. 7.
    P.T. Brown, G.W. Ross, R.W. Eason, A.R. Pogosyan, Control of domain structures in lithium tantalate using interferometric optical patterning. Opt. Commun. 163, 310–316 (1999)CrossRefGoogle Scholar
  8. 8.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432(4), 84–87 (2004)CrossRefGoogle Scholar
  9. 9.
    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)CrossRefGoogle Scholar
  10. 10.
    S.O. Leontsev, R.E. Eitel, Progress in engineering high strain lead-free piezoelectric ceramics. Sci. Technol. Adv. Mater. 11, 044302 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Katz, R.K. Route, D.S. Hum, K.R. Parameswaran, G.D. Miller, M.M. Fejer, Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications. Opt. Lett. 29(15), 1775–1777 (2004)CrossRefGoogle Scholar
  12. 12.
    R.T. Smith, F.S. Welsh, Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)Google Scholar
  13. 13.
    A. Huanosta, A.R. West, The electrical properties of ferroelectric LiTaO3 and its solid solutions. J. Appl. Phys. 61, 5386 (1987)CrossRefGoogle Scholar
  14. 14.
    Z.G. Ye, R. Von Der Mühll, J. Ravez, in IEEE 7th International Symposium on Applications of Ferroelectrics. Sintering Mechanism of LiTaO3 Ceramics by the Addition of Lithium and Magnesium Fluorides (Champaign, IL, 1990), pp. 566–569Google Scholar
  15. 15.
    S. Shimada, K. Kodaira, T. Matsushita, Sintering LiTaO3 and KTaO3 with the aid of manganese oxide. J. Mater. Sci. 19, 1385–1390 (1984)CrossRefGoogle Scholar
  16. 16.
    Y. Torii, T. Sekiya, T. Yamamoto, K. Koyabashi, Y. Abe, Preparation and properties of LiTaO3-based solid solutions with cation vacancies. Mat. Res. Bull. 18, 1569–1574 (1983)CrossRefGoogle Scholar
  17. 17.
    S. Kawakami, A. Tsuzuki, T. Sekiya, T. Ishikuro, M. Masuda, Y. Torii, Structural and dielectric properties in the system LiTaO3-WO3. Mater. Res. Bull. 20, 1435 (1985)CrossRefGoogle Scholar
  18. 18.
    A. Elouadi, M. Zriouil, J. Ravez, P. Hagenmuller, Some new non-stoichiometric phases appearing close to LiTaO3 in the ternary system Li2O-Ta2O5-(TiO2)2. Mat. Res. Bull. 16, 1099–1106 (1981)CrossRefGoogle Scholar
  19. 19.
    J.P. Bonnet, J. Ravez, G.T. Joo, P. Hagenmuller, Correlations between sintering conditions and microstructure in ceramics of composition Li0.80Mg0.20 (Ta0.80Ti0.20)O3. J. Mater. Res. 3(2), 387–391 (1988)CrossRefGoogle Scholar
  20. 20.
    B.S. Chiou, Y.T. Lin, J.G. Duh, Sintering behavior and dielectric characteristics of LiTaO3 with the addition of (Mg2 + TiO2). Mater. Chem. Phys. 28, 51 (1991)CrossRefGoogle Scholar
  21. 21.
    C.-F. Chen, A. Llobert, G.L. Brennecka, R.T. Forsyth, D.R. Guidry, P.A. Papin, R.J. McCabe, Powder synthesis and hot-pressing of a LiTaO3 ceramic. J. Am. Ceram. Soc. 95(9), 2820–2826 (2012)CrossRefGoogle Scholar
  22. 22.
    FIZ Karlsruhe ICSD collection code 9537, structure form LiTaO3 Google Scholar
  23. 23.
    FIZ Karlsruhe ICSD collection code 23815, structure form LiAlO2 Google Scholar
  24. 24.
    FIZ Karlsruhe ICSD collection code 10480, structure form LiAl5O8 Google Scholar
  25. 25.
    T. Yang, Y. Liu, L. Ahang, M. Hu, Q. Yang, Z. Huang, M. Fang, Powder synthesis and properties of LiTaO3 ceramics. Adv. Powder Technol. 25(3), 933–936 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA
  3. 3.Materials Synthesis and Integrated Devices DivisionLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Materials Science and Engineering CenterSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations