Skip to main content
Log in

Physical properties of La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol–gel and solid state process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have synthesized La0.7Ca0.2Sr0.1MnO3 sample using two different methods: the solid-state reaction (S1) and the sol–gel process (S2). Structural, morphological, infrared and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, Spectrum Two FT-IR Spectrometer and vibrating sample magnetometer. Despite the various conditions employed in the elaboration, the crystallographic study shows that our samples are single phase and crystallize in orthorhombic system with Pnma space group. A small difference appears in the microstructural and magnetic properties. The Curie temperature TC is found to be 308–256 K for S1 and S2 respectively. A large magnetocaloric effect has been observed in both samples, besides; the relative cooling power for S2 is bigger than S1. It attains exactly 250.75 J kg−1 under a magnetic applied field of 5 T. These results show that the elaboration process has an important impact on the magnetic and magnetocaloric properties. Furthermore, the importance of the magnetoelastic coupling and electron interaction in the magnetocaloric properties of manganite was confirmed by the analysis of Landau theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)

    Article  Google Scholar 

  2. SYu. Dan’Kov, A.M. Tishin, Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B. 57, 3478 (1998)

    Article  Google Scholar 

  3. V.K. Pecharsky, K.A. Gschneidner, Giant magnetocaloric effect in Gd5(Si2Ge2). J. Phys. Rev. Lett. 78, 4494 (1997)

    Article  Google Scholar 

  4. H. Wada, Y. Tanabe, Giant magnetocaloric effect of MnAs1−xSbx. Appl. Phys. Lett. 79, 3302 (2001)

    Article  Google Scholar 

  5. S. Fujieda, A. Fujita, K. Fukamichi, Large magnetocaloric effects in NaZn13-type La(FexSi1−x)13 compounds and their hydrides composed of icosahedral clusters. Sci. Technol. Adv. Mater. 4, 339 (2003)

    Article  Google Scholar 

  6. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)

    Article  Google Scholar 

  7. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. 619, 627 (2015)

    Article  Google Scholar 

  8. F. Ayadi, Y. Regaieg, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, H. Lecoq, S. Nowak, S. Ammar, L. Sicard, Preparation of nanostructured La0.7Ca0.3−xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magnetocaloric properties. J. Magn. Magn. Mater. 381, 215 (2015)

    Article  Google Scholar 

  9. I. Messaoui, K. Riahi, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Phenomenological model of the magnetocaloric effect on Nd0.7Ca0.15Sr0.15MnO3 compound prepared by ball milling method. Ceram. Int. 42, 6825 (2016)

    Article  Google Scholar 

  10. I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Theoretical Investigation of magnetocaloric effect in La0.6Ca0.2Ba0.150.05MnO3 manganite. J. Supercond. Nov. Magn (2016). doi:10.1007/s10948-016-3512-4

    Google Scholar 

  11. O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Transition metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150 (2002)

    Article  Google Scholar 

  12. E. Dagotto, T. Hotta, A. Moreo, Collossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1 (2001)

    Article  Google Scholar 

  13. J.B. Goodenough, Electronic structure of CMR manganites. J. Appl. Phys. 81, 5330 (1997)

    Article  Google Scholar 

  14. J. Mira, J. Rivas, L.E. Hueso, F. Rivadulla, M.A. Lopez Quintela, Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La2/3(Ca1−xSrx)2/3MnO3. J. Appl. Phys. 91, 8903 (2002)

    Article  Google Scholar 

  15. A. Maignan, C. Martin, F. Damay, B. Raveau, Factors governing the magnetoresistance properties of the electron-doped manganites Ca1−xAxMnO3 (A = Ln, Th). Chem. Mater. 10, 950 (1998)

    Article  Google Scholar 

  16. K.S. Shankar, A.K. Raychaudhuiri, Low temperature polymer precursor based synthesis of nanocrystalline particles of lanthanum calcium manganese oxide (La0.67Ca0.33MnO3) with enhanced ferromagnetic transition temperature. J. Mater. Res. 21, 27 (2006)

    Article  Google Scholar 

  17. S.-B. Tian, M.-H. Phan, S.-C. Yu, N.H. Hur, Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. Phys. B Condens. Matter. 327, 221 (2003)

    Article  Google Scholar 

  18. M. Mansouri, H. Omrani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Madouri, A. Cheikhrouhou, Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3. J. Magn. Magn. Mater. 401, 593 (2016)

    Article  Google Scholar 

  19. A. Mehri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Magnetocaloric properties in La0.5Ca0.45K0.05MnO3, Pr0.5Sr0.45K0.05MnO3, and Nd0.5Sr0.45K0.05MnO3 manganites. J. Supercond. Nov. Magn. 28, 3135 (2015)

    Article  Google Scholar 

  20. D. Segal, Chemical synthesis of ceramic materials. J. Mater. Chem. 7, 1297 (1997)

    Article  Google Scholar 

  21. A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91 (2016)

    Article  Google Scholar 

  22. M. Oumezzine, J.S. Amaral, F.J. Mompean, M.G. Hernandez, M. Oumezzine, Structural, magnetic, magneto-transport properties and Bean–Rodbell model simulation of disorder effects in Cr3+ substituted La0.67Ba0.33MnO3 nanocrystalline synthesized by modified Pechini method. RSC Adv. 6, 32194 (2016)

    Article  Google Scholar 

  23. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969)

    Article  Google Scholar 

  24. T. Roisnel, J. Rodriguez-Carvajal, Computer Program FULLPROF, LLB-LCSIM (2003)

  25. T.D. Thanh, L.H. Nguyen, D.H. Manh, N.V. Chien, P.T. Phong, N.V. Khiem, L.V. Hong, N.X. Phuc, Structural, magnetic and magnetotransport behavior of La0.7SrxCa0.3−xMnO3 compounds. Phys. B 407, 145 (2012)

    Article  Google Scholar 

  26. M.H. Phan, V. Franco, N.S. Bingham, H. Srikanth, N.H. Hur, S.C. Yu, Tricritical point and critical exponents of La0.7Ca0.3−xSrxMnO3 (x = 0, 0.05, 0.1, 0.2,0.25) single crystals. J. Alloys Compd. 508, 238 (2010)

    Article  Google Scholar 

  27. R. M’nassri, N. Chniba Boudjada, A. Cheikhrouhou, Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J. Alloys Compd. 626, 20 (2015)

    Article  Google Scholar 

  28. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  29. J.A. Collado, C. Frontera, J.L. Garcĭa-Muňoz, C. Ritter, M. Brunelli, M.A.G. Aranda, Room temperature structural and microstructural study for the magneto-conducting La5/8−xPrxCa3/8MnO3 (0 ≤ x ≤ 5/8) Series. Chem. Mater. 15, 167 (2003)

    Article  Google Scholar 

  30. P.T. Phong, S.J. Jang, B.T. Huy, Y.I. Lee, I.J. Lee, Structural, magnetic, infrared and Raman studies of La0.8SrxCa0.2−xMnO3 (0 ≤ x ≤ 0.2). J. Mater. Sci. Mater. Electron. 24, 2292 (2013)

    Article  Google Scholar 

  31. I. Matos, S. Serio, M.E. Lopes, M.R. Nunes, M.E. Melo Jorge, Effect of the sintering temperature on the properties of nanocrystalline Ca1−xSmxMnO3 (0 ≤ x ≤ 0.4) powders. J. Alloys Compd. 509, 9617 (2011)

    Article  Google Scholar 

  32. D. Fan, Q. Li, Y. Xuan, H. Tan, J. Fang, Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application. Appl. Therm. Eng. 51, 255 (2013)

    Article  Google Scholar 

  33. Y.K. Lakshmi, G. Venkataiah, P.V. Vithal MandReddy, Phys. B 403 , 3059–3066 (2008)

    Article  Google Scholar 

  34. K.H.J. Buschow, F.R. de Boer, Physics of Magnetism and Magnetic Materials (Kluwer Academic Publishers, Berlin, 2003)

    Book  Google Scholar 

  35. A. Ezaami, E. Sellami-Jmal, I. Chaaba, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of elaborating method on magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3 manganite. J. Alloys Compd. 685, 710 (2016)

    Article  Google Scholar 

  36. J.M. De Teresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, Z. Arnold, Evidence for magnetic polarons in the magnetoresistive perovskites. Nature 386, 256 (1997)

    Article  Google Scholar 

  37. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 (0.1 ≤ x ≤ 0.4) manganites. J. Alloys Compd. 645, 559 (2015)

    Article  Google Scholar 

  38. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55Sr0.45MnO3 manganite. Solid State Commun. 223, 6 (2015)

    Article  Google Scholar 

  39. D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, J.F. Mitchell, Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−xCaxMnO3. Phys. Rev. Lett. 89, 227202 (2002)

    Article  Google Scholar 

  40. T.-L. Phan, Y.D. Zhang, P. Zhang, T.D. Thanh, S.C. Yu, Critical behavior and magnetic-entropy change of orthorhombic La0.7Ca0.2Sr0.1MnO3. J. Appl. Phys. 112, 093906 (2012)

    Article  Google Scholar 

  41. K.P.S. Anil, J.P. Alias, S.K. Date, Effect of compositional homogeneity on the magnetic properties of La0.7Ca0.3MnO3. J. Mater. Chem. 8, 1219 (1998)

    Article  Google Scholar 

  42. N.A. de Oliveira, P.J. von Ranke, Theoretical aspects of the magnetocaloric effect. Phys. Rep. 489, 89 (2010)

    Article  Google Scholar 

  43. E. Sellami-Jmal, A. Marzouki, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, N. Njah, Deficiency effect on magnetic and magnetocaloric properties of La0.65−xCa0.35MnO3 manganites synthesized using sol–gel technique. J. Supercond. Nov. Magn. 28, 831 (2015)

    Article  Google Scholar 

  44. T.-L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, A.T. Le, Anh D. Phan, S.C. Yu, First-to-second-order magnetic-phase transformation in La0.7Ca0.3−xBaxMnO3 exhibiting large magnetocaloric effect. J. Alloys Compd. 657, 818 (2016)

    Article  Google Scholar 

  45. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Enhanced relative cooling power in Ga-doped La0.7(Sr,Ca)0.3MnO3 with ferromagnetic-like canted state. RSC Adv. 6, 54299 (2016)

    Article  Google Scholar 

  46. V. Franco, J.S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)

    Article  Google Scholar 

  47. H. Oesterreicher, F.T. Parker, Magnetic cooling near Curie temperatures above 300 K. J. Appl. Phys. 55, 4336 (1984)

    Article  Google Scholar 

  48. N.H. Duc, T.D. Hien, P.E. Brommer, J.J.M. Franse, The magnetic behaviour of rare-earth-transition metal compounds. J. Magn. Magn. Mater. 104, 1252 (1992)

    Article  Google Scholar 

  49. J.S. Amaral, M.S. Reis, V.S. Amaral, T.M. Mendonca, J.P. Araujo, M.A. Sa, P.B. Tavares, J.M. Vieira, Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La–Sr manganites. J. Magn. Magn. Mater. 290, 686 (2005)

    Article  Google Scholar 

  50. W.J. Lu, X. Luo, C.Y. Hao, W.H. Song, Y.P. Sun, Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33MnO3 nanoparticles. J. App. Phys. 104 , 113908 (2008)

    Article  Google Scholar 

  51. V. Franco, A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int. J. Refrig. 33, 465 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Tunisian Ministry of Higher Education, Scientific Research and Information and Communication Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ezaami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezaami, A., Nasser, N.O., Cheikhrouhou-Koubaa, W. et al. Physical properties of La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol–gel and solid state process. J Mater Sci: Mater Electron 28, 3648–3658 (2017). https://doi.org/10.1007/s10854-016-5969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5969-0

Keywords

Navigation