Physical properties of La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol–gel and solid state process

  • A. Ezaami
  • N. Ouled Nasser
  • W. Cheikhrouhou-Koubaa
  • M. Koubaa
  • A. Cheikhrouhou
  • E. K. Hlil


We have synthesized La0.7Ca0.2Sr0.1MnO3 sample using two different methods: the solid-state reaction (S1) and the sol–gel process (S2). Structural, morphological, infrared and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, Spectrum Two FT-IR Spectrometer and vibrating sample magnetometer. Despite the various conditions employed in the elaboration, the crystallographic study shows that our samples are single phase and crystallize in orthorhombic system with Pnma space group. A small difference appears in the microstructural and magnetic properties. The Curie temperature TC is found to be 308–256 K for S1 and S2 respectively. A large magnetocaloric effect has been observed in both samples, besides; the relative cooling power for S2 is bigger than S1. It attains exactly 250.75 J kg−1 under a magnetic applied field of 5 T. These results show that the elaboration process has an important impact on the magnetic and magnetocaloric properties. Furthermore, the importance of the magnetoelastic coupling and electron interaction in the magnetocaloric properties of manganite was confirmed by the analysis of Landau theory.


Manganite Magnetic Applied Field Magnetocaloric Effect Magnetic Entropy Change Landau Theory 



This work has been supported by the Tunisian Ministry of Higher Education, Scientific Research and Information and Communication Technology.


  1. 1.
    K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)CrossRefGoogle Scholar
  2. 2.
    SYu. Dan’Kov, A.M. Tishin, Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B. 57, 3478 (1998)CrossRefGoogle Scholar
  3. 3.
    V.K. Pecharsky, K.A. Gschneidner, Giant magnetocaloric effect in Gd5(Si2Ge2). J. Phys. Rev. Lett. 78, 4494 (1997)CrossRefGoogle Scholar
  4. 4.
    H. Wada, Y. Tanabe, Giant magnetocaloric effect of MnAs1−xSbx. Appl. Phys. Lett. 79, 3302 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Fujieda, A. Fujita, K. Fukamichi, Large magnetocaloric effects in NaZn13-type La(FexSi1−x)13 compounds and their hydrides composed of icosahedral clusters. Sci. Technol. Adv. Mater. 4, 339 (2003)CrossRefGoogle Scholar
  6. 6.
    M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. 619, 627 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Ayadi, Y. Regaieg, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, H. Lecoq, S. Nowak, S. Ammar, L. Sicard, Preparation of nanostructured La0.7Ca0.3−xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magnetocaloric properties. J. Magn. Magn. Mater. 381, 215 (2015)CrossRefGoogle Scholar
  9. 9.
    I. Messaoui, K. Riahi, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Phenomenological model of the magnetocaloric effect on Nd0.7Ca0.15Sr0.15MnO3 compound prepared by ball milling method. Ceram. Int. 42, 6825 (2016)CrossRefGoogle Scholar
  10. 10.
    I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Theoretical Investigation of magnetocaloric effect in La0.6Ca0.2Ba0.150.05MnO3 manganite. J. Supercond. Nov. Magn (2016). doi: 10.1007/s10948-016-3512-4 Google Scholar
  11. 11.
    O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Transition metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150 (2002)CrossRefGoogle Scholar
  12. 12.
    E. Dagotto, T. Hotta, A. Moreo, Collossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1 (2001)CrossRefGoogle Scholar
  13. 13.
    J.B. Goodenough, Electronic structure of CMR manganites. J. Appl. Phys. 81, 5330 (1997)CrossRefGoogle Scholar
  14. 14.
    J. Mira, J. Rivas, L.E. Hueso, F. Rivadulla, M.A. Lopez Quintela, Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La2/3(Ca1−xSrx)2/3MnO3. J. Appl. Phys. 91, 8903 (2002)CrossRefGoogle Scholar
  15. 15.
    A. Maignan, C. Martin, F. Damay, B. Raveau, Factors governing the magnetoresistance properties of the electron-doped manganites Ca1−xAxMnO3 (A = Ln, Th). Chem. Mater. 10, 950 (1998)CrossRefGoogle Scholar
  16. 16.
    K.S. Shankar, A.K. Raychaudhuiri, Low temperature polymer precursor based synthesis of nanocrystalline particles of lanthanum calcium manganese oxide (La0.67Ca0.33MnO3) with enhanced ferromagnetic transition temperature. J. Mater. Res. 21, 27 (2006)CrossRefGoogle Scholar
  17. 17.
    S.-B. Tian, M.-H. Phan, S.-C. Yu, N.H. Hur, Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. Phys. B Condens. Matter. 327, 221 (2003)CrossRefGoogle Scholar
  18. 18.
    M. Mansouri, H. Omrani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Madouri, A. Cheikhrouhou, Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3. J. Magn. Magn. Mater. 401, 593 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Mehri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Magnetocaloric properties in La0.5Ca0.45K0.05MnO3, Pr0.5Sr0.45K0.05MnO3, and Nd0.5Sr0.45K0.05MnO3 manganites. J. Supercond. Nov. Magn. 28, 3135 (2015)CrossRefGoogle Scholar
  20. 20.
    D. Segal, Chemical synthesis of ceramic materials. J. Mater. Chem. 7, 1297 (1997)CrossRefGoogle Scholar
  21. 21.
    A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Oumezzine, J.S. Amaral, F.J. Mompean, M.G. Hernandez, M. Oumezzine, Structural, magnetic, magneto-transport properties and Bean–Rodbell model simulation of disorder effects in Cr3+ substituted La0.67Ba0.33MnO3 nanocrystalline synthesized by modified Pechini method. RSC Adv. 6, 32194 (2016)CrossRefGoogle Scholar
  23. 23.
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  24. 24.
    T. Roisnel, J. Rodriguez-Carvajal, Computer Program FULLPROF, LLB-LCSIM (2003)Google Scholar
  25. 25.
    T.D. Thanh, L.H. Nguyen, D.H. Manh, N.V. Chien, P.T. Phong, N.V. Khiem, L.V. Hong, N.X. Phuc, Structural, magnetic and magnetotransport behavior of La0.7SrxCa0.3−xMnO3 compounds. Phys. B 407, 145 (2012)CrossRefGoogle Scholar
  26. 26.
    M.H. Phan, V. Franco, N.S. Bingham, H. Srikanth, N.H. Hur, S.C. Yu, Tricritical point and critical exponents of La0.7Ca0.3−xSrxMnO3 (x = 0, 0.05, 0.1, 0.2,0.25) single crystals. J. Alloys Compd. 508, 238 (2010)CrossRefGoogle Scholar
  27. 27.
    R. M’nassri, N. Chniba Boudjada, A. Cheikhrouhou, Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J. Alloys Compd. 626, 20 (2015)CrossRefGoogle Scholar
  28. 28.
    G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  29. 29.
    J.A. Collado, C. Frontera, J.L. Garcĭa-Muňoz, C. Ritter, M. Brunelli, M.A.G. Aranda, Room temperature structural and microstructural study for the magneto-conducting La5/8−xPrxCa3/8MnO3 (0 ≤ x ≤ 5/8) Series. Chem. Mater. 15, 167 (2003)CrossRefGoogle Scholar
  30. 30.
    P.T. Phong, S.J. Jang, B.T. Huy, Y.I. Lee, I.J. Lee, Structural, magnetic, infrared and Raman studies of La0.8SrxCa0.2−xMnO3 (0 ≤ x ≤ 0.2). J. Mater. Sci. Mater. Electron. 24, 2292 (2013)CrossRefGoogle Scholar
  31. 31.
    I. Matos, S. Serio, M.E. Lopes, M.R. Nunes, M.E. Melo Jorge, Effect of the sintering temperature on the properties of nanocrystalline Ca1−xSmxMnO3 (0 ≤ x ≤ 0.4) powders. J. Alloys Compd. 509, 9617 (2011)CrossRefGoogle Scholar
  32. 32.
    D. Fan, Q. Li, Y. Xuan, H. Tan, J. Fang, Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application. Appl. Therm. Eng. 51, 255 (2013)CrossRefGoogle Scholar
  33. 33.
    Y.K. Lakshmi, G. Venkataiah, P.V. Vithal MandReddy, Phys. B 403 , 3059–3066 (2008)CrossRefGoogle Scholar
  34. 34.
    K.H.J. Buschow, F.R. de Boer, Physics of Magnetism and Magnetic Materials (Kluwer Academic Publishers, Berlin, 2003)CrossRefGoogle Scholar
  35. 35.
    A. Ezaami, E. Sellami-Jmal, I. Chaaba, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of elaborating method on magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3 manganite. J. Alloys Compd. 685, 710 (2016)CrossRefGoogle Scholar
  36. 36.
    J.M. De Teresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, Z. Arnold, Evidence for magnetic polarons in the magnetoresistive perovskites. Nature 386, 256 (1997)CrossRefGoogle Scholar
  37. 37.
    A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 (0.1 ≤ x ≤ 0.4) manganites. J. Alloys Compd. 645, 559 (2015)CrossRefGoogle Scholar
  38. 38.
    A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55Sr0.45MnO3 manganite. Solid State Commun. 223, 6 (2015)CrossRefGoogle Scholar
  39. 39.
    D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, J.F. Mitchell, Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−xCaxMnO3. Phys. Rev. Lett. 89, 227202 (2002)CrossRefGoogle Scholar
  40. 40.
    T.-L. Phan, Y.D. Zhang, P. Zhang, T.D. Thanh, S.C. Yu, Critical behavior and magnetic-entropy change of orthorhombic La0.7Ca0.2Sr0.1MnO3. J. Appl. Phys. 112, 093906 (2012)CrossRefGoogle Scholar
  41. 41.
    K.P.S. Anil, J.P. Alias, S.K. Date, Effect of compositional homogeneity on the magnetic properties of La0.7Ca0.3MnO3. J. Mater. Chem. 8, 1219 (1998)CrossRefGoogle Scholar
  42. 42.
    N.A. de Oliveira, P.J. von Ranke, Theoretical aspects of the magnetocaloric effect. Phys. Rep. 489, 89 (2010)CrossRefGoogle Scholar
  43. 43.
    E. Sellami-Jmal, A. Marzouki, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, N. Njah, Deficiency effect on magnetic and magnetocaloric properties of La0.65−xCa0.35MnO3 manganites synthesized using sol–gel technique. J. Supercond. Nov. Magn. 28, 831 (2015)CrossRefGoogle Scholar
  44. 44.
    T.-L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, A.T. Le, Anh D. Phan, S.C. Yu, First-to-second-order magnetic-phase transformation in La0.7Ca0.3−xBaxMnO3 exhibiting large magnetocaloric effect. J. Alloys Compd. 657, 818 (2016)CrossRefGoogle Scholar
  45. 45.
    A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Enhanced relative cooling power in Ga-doped La0.7(Sr,Ca)0.3MnO3 with ferromagnetic-like canted state. RSC Adv. 6, 54299 (2016)CrossRefGoogle Scholar
  46. 46.
    V. Franco, J.S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)CrossRefGoogle Scholar
  47. 47.
    H. Oesterreicher, F.T. Parker, Magnetic cooling near Curie temperatures above 300 K. J. Appl. Phys. 55, 4336 (1984)CrossRefGoogle Scholar
  48. 48.
    N.H. Duc, T.D. Hien, P.E. Brommer, J.J.M. Franse, The magnetic behaviour of rare-earth-transition metal compounds. J. Magn. Magn. Mater. 104, 1252 (1992)CrossRefGoogle Scholar
  49. 49.
    J.S. Amaral, M.S. Reis, V.S. Amaral, T.M. Mendonca, J.P. Araujo, M.A. Sa, P.B. Tavares, J.M. Vieira, Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La–Sr manganites. J. Magn. Magn. Mater. 290, 686 (2005)CrossRefGoogle Scholar
  50. 50.
    W.J. Lu, X. Luo, C.Y. Hao, W.H. Song, Y.P. Sun, Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33MnO3 nanoparticles. J. App. Phys. 104 , 113908 (2008)CrossRefGoogle Scholar
  51. 51.
    V. Franco, A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int. J. Refrig. 33, 465 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Ezaami
    • 1
    • 2
  • N. Ouled Nasser
    • 1
  • W. Cheikhrouhou-Koubaa
    • 1
    • 2
  • M. Koubaa
    • 1
  • A. Cheikhrouhou
    • 1
  • E. K. Hlil
    • 3
  1. 1.Materials Physics Laboratory, Faculty of Sciences of SfaxSfax UniversitySfaxTunisia
  2. 2.Digital Research CenterSfax TechnoparkSakiet-ezzitTunisia
  3. 3.Institut Néel, CNRS et Université Joseph FourierGrenoble Cedex 9France

Personalised recommendations