Coprecipitation synthesis of hollow poly(acrylonitrile) microspheres@CoFe2O4 with graphene as lightweight microwave absorber

  • Bin Zhang
  • Jun Wang
  • Junpeng Wang
  • Huajun Duan
  • Siqi Huo
  • Yushan Tang


Lightweight microwave absorbing material based on CoFe2O4-coated poly(acrylonitrile) microspheres (PANS@CF), reduced graphene oxide (RGO) and epoxy resin was prepared by a facile route. Compared with pure PANS@CF and RGO composites, the −10 dB absorption bandwidth and the minimum RL of the hybrid composites were enhanced. The bandwidth less than −10 dB was almost 3.6 GHz in the range of 12–15.6 GHz, with a matching thickness of 2 mm. A possible absorption mechanism was proposed that the enhanced impedance matching condition improved by the combination of dielectric materials and magnetic microspheres, and the enhanced electromagnetic wave attenuation characteristic due to the increased propagation paths by multiple reflections, both promoted the absorption performance of the composites. The content of magnetic nanoparticles in hollow magnetic spheres was about 81.73 wt%, and the density of the hybrid composites was in the range of 0.41–0.50 g/cm3, which makes the composites have a promising future in lightweight microwave absorbing materials.


Graphene Oxide Reduce Graphene Oxide CoFe2O4 Microwave Absorption Reflection Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge Dr. Bin Zhang from School of Science at Wuhan University of Technology for his help in the electromagnetic test. This work is supported by the National Natural Science Foundation of China (Grant No. 51373129).


  1. 1.
    M.S.S. Dorraji, M.H. Rasoulifard, M.H. Khodabandeloo, M. Rastgouy-Houjaghan, H.K. Zarajabad, Appl. Surf. Sci. 366, 210 (2016)CrossRefGoogle Scholar
  2. 2.
    C. Brosseau, W. NDong, A. Mdarhri, J. Appl. Phys. 104, 074907 (2008)CrossRefGoogle Scholar
  3. 3.
    Z. Liu, G. Xu, M. Zhang, K. Xiong, P. Meng, J. Mater. Sci. Mater. Electron. 27, 9278 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Yong, Y. Yang, X. Wen, D. Jun, J. Appl. Phys. 115, 17A521 (2014)CrossRefGoogle Scholar
  5. 5.
    W. Wang, J.X. Guo, C. Long, W. Li, J.G. Guan, J. Alloys Compd. 637, 106 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Brosseau, P. Molinie, F. Boulic, F. Carmona, J. Appl. Phys. 89, 8297 (2001)CrossRefGoogle Scholar
  7. 7.
    F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)CrossRefGoogle Scholar
  8. 8.
    B. Zhang, Y.C. Du, P. Zhang, H.T. Zhao, L.L. Kang, X.J. Han, P. Xu, J. Appl. Polym. Sci. 130, 1909 (2013)CrossRefGoogle Scholar
  9. 9.
    L.Z. Wu, J. Ding, H.B. Jiang, C.P. Neo, L.F. Chen, C.K. Ong, J. Appl. Phys. 99, 083905 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Zhang, Q. Jiao, J. Hu, J. Li, Y. Zhao, H. Li, Q. Wu, J. Alloys Compd. 630, 195 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Brosseau, P. Queffelec, P. Talbot, J. Appl. Phys. 89, 4532 (2001)CrossRefGoogle Scholar
  12. 12.
    G. Liu, W. Jiang, D. Sun, Y. Wang, F. Li, Appl. Surf. Sci. 314, 523 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, ACS Appl. Mater. Interfaces 8, 3730 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du, S.R. Hu, J.Y. Wang, X.H. Wang, Appl. Phys. Lett. 98, 072906 (2011)CrossRefGoogle Scholar
  15. 15.
    W.Y. Fu, S.K. Liu, W.H. Fan, H.B. Yang, X.F. Pang, J. Xu, G.T. Zou, J. Magn. Magn. Mater. 316, 54 (2007)CrossRefGoogle Scholar
  16. 16.
    J.P. Wang, J. Wang, B. Zhang, Y. Sun, W. Chen, T. Wang, J. Magn. Magn. Mater. 401, 209 (2016)CrossRefGoogle Scholar
  17. 17.
    C.M. Yang, H.Y. Li, D.B. Xiong, Z.Y. Cao, React. Funct. Polym. 69, 137 (2009)CrossRefGoogle Scholar
  18. 18.
    G.Q. Wang, L.F. Wang, Y.L. Gan, W. Lu, Appl. Surf. Sci. 276, 744 (2013)CrossRefGoogle Scholar
  19. 19.
    A.G. Dong, Y.J. Wang, Y. Tang, N. Ren, W.L. Yang, Z. Gao, Chem. Commun. 4, 350 (2002)CrossRefGoogle Scholar
  20. 20.
    Y.I. Kim, D. Kim, C.S. Lee, Phys. B Condens. Matter 337, 42 (2003)CrossRefGoogle Scholar
  21. 21.
    M. Rajendran, R.C. Pullar, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar, J. Magn. Magn. Mater. 232, 71 (2001)CrossRefGoogle Scholar
  22. 22.
    R. Rakshit, M. Mandal, M. Pal, K. Mandal, Appl. Phys. Lett. 104, 092412 (2014)CrossRefGoogle Scholar
  23. 23.
    C.L. Bao, L. Song, W.Y. Xing, B.H. Yuan, C.A. Wilkie, J.L. Huang, Y.Q. Guo, Y. Hu, J. Mater. Chem. 22, 6088 (2012)CrossRefGoogle Scholar
  24. 24.
    I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 73 (2010)CrossRefGoogle Scholar
  25. 25.
    S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Carbon 48, 4466 (2010)CrossRefGoogle Scholar
  26. 26.
    Z. Li, M. Ye, A. Han, H. Du, J. Mater. Sci. Mater. Electron. 27, 1031 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Fu, Q.Z. Jiao, Y. Zhao, H.S. Li, J. Mater. Chem. A 2, 735 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Zhang, J. Wang, J.P. Wang, S.Q. Hun, B. Zhang, Y.S. Tang, J. Magn. Magn. Mater. 413, 81 (2016)CrossRefGoogle Scholar
  29. 29.
    H.B. Yang, T. Ye, Y. Lin, M. Liu, Appl. Surf. Sci. 357, 1289 (2015)CrossRefGoogle Scholar
  30. 30.
    J.P. Wang, J. Wang, R.X. Xu, Y. Sun, B. Zhang, W. Chen, T. Wang, S. Yang, J. Alloys Compd. 653, 14 (2015)CrossRefGoogle Scholar
  31. 31.
    B.J.P. Adohi, D. Bychanok, B. Haidar, C. Brosseau, Appl. Phys. Lett. 102, 072903 (2013)CrossRefGoogle Scholar
  32. 32.
    B.J.P. Adohi, A. Mdarhri, C. Prunier, B. Haidar, C. Brosseau, J. Appl. Phys. 108, 074108 (2010)CrossRefGoogle Scholar
  33. 33.
    Y. Wang, H. Guan, C. Dong, X. Xiao, S. Du, Y. Wang, Ceram. Int. 42, 936 (2016)CrossRefGoogle Scholar
  34. 34.
    B.J.P. Adohi, V. Laur, B. Haidar, C. Brosseau, Appl. Phys. Lett. 104, 082902 (2014)CrossRefGoogle Scholar
  35. 35.
    J.H. Luo, Y. Xu, W. Yao, C.F. Jiang, J.G. Xu, Compos. Sci. Technol. 117, 315 (2015)CrossRefGoogle Scholar
  36. 36.
    D.S. McLachlan, G. Sauti, J. Nanomater. 2007, 1 (2007)CrossRefGoogle Scholar
  37. 37.
    R.P. Kusy, J. Appl. Phys. 48, 5301 (1977)CrossRefGoogle Scholar
  38. 38.
    B. Adohi, B. Haidar, L. Costa, V. Laur, C. Brosseau, Eur. Phys. J. B 88, 280 (2015)CrossRefGoogle Scholar
  39. 39.
    S.M. Abbas, A.K. Dixit, R. Chatterjee, T.C. Goel, J. Magn. Magn. Mater. 309, 20 (2007)CrossRefGoogle Scholar
  40. 40.
    M. Zong, Y. Huang, N. Zhang, Appl. Surf. Sci. 345, 272 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Huang, Q. Qi, H. Pan, X. Lei, X. Liu, J. Mater. Sci. Mater. Electron. 27, 9577 (2016)CrossRefGoogle Scholar
  42. 42.
    X. Zhang, Y. Huang, X. Chen, C. Li, J. Chen, Mater. Lett. 158, 380 (2015)CrossRefGoogle Scholar
  43. 43.
    T. Wang, L. Qiao, R. Han, Z.Q. Zhang, J. Magn. Magn. Mater. 324, 3209 (2012)CrossRefGoogle Scholar
  44. 44.
    S.-T. Kim, S.-S. Kim, J. Alloys Compd. 687, 22 (2016)CrossRefGoogle Scholar
  45. 45.
    M.S. Seyed Dorraji, M.H. Rasoulifard, A.R. Amani-Ghadim, M.H. Khodabandeloo, M. Felekari, M.R. Khoshrou, I. Hajimiri, Appl. Surf. Sci. 383, 9 (2016)CrossRefGoogle Scholar
  46. 46.
    J. Wang, Y. Sun, W. Chen, T. Wang, R. Xu, J. Wang, J. Appl. Phys. 117, 154903 (2015)CrossRefGoogle Scholar
  47. 47.
    Y. Wang, Z. Peng, W. Jiang, J. Mater. Sci. Mater. Electron. 27, 6010 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bin Zhang
    • 1
  • Jun Wang
    • 1
  • Junpeng Wang
    • 1
  • Huajun Duan
    • 1
  • Siqi Huo
    • 1
  • Yushan Tang
    • 1
  1. 1.School of Material Science and EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations