Skip to main content
Log in

Influence of magnetic ion doping on structural, optical, magnetic and hyperfine properties of nanocrystalline SnO2 based dilute magnetic semiconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article reports the structural, optical and magnetic properties of transition metal (Ni, Co, Mn and Fe) doped SnO2 nanoparticles prepared by modified Pechini sol–gel method. From the X-ray diffraction studies, it is obvious that all the synthesized samples show a phase purity of rutile tetragonal crystal structure of SnO2. The morphology was studied and the particle sizes were estimated from the field emission scanning electron microscopy. From photoluminescence spectra, we observed emission due to the presence of singly ionized oxygen vacancies. Raman spectroscopy shows dominant peaks at 644 and 782 cm−1 which were ascribed to A1g and B2g modes of the rutile structure. Isomer shifting due to dopant addition and large quadrupole splitting due to surface defects were observed in Mössbauer spectra. All the samples show ferromagnetic ordering up to 1 T. The relatively stronger ferromagnetic nature in Fe and Co doped SnO2 is due to the strong p–d exchange interaction. In case of Ni and Mn doped SnO2 samples, the lack of carrier-mediated interaction due to its inherent semiconducting nature reduces the total magnetic moment observed in these samples. The exchange coupling depends on the dopant type and its concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Sharma, M. Varshney, S. Kumar, K.D. Verma, R. Kumar, Magnetic properties of Fe and Ni doped SnO2 nanoparticles. Nanomater. Nanotechnol. 1, 29 (2011)

    Article  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)

    Article  Google Scholar 

  3. A.L. Schoenhalz, J.T. Arantes, A. Fazzio, G.M. Dalpian, Surface magnetization in non-doped ZnO nanostructures. Appl. Phys. Lett. 94, 162503 (2009)

    Article  Google Scholar 

  4. Y.C. Cho, S.J. Kim, S. Lee, S.J. Kim, C.R. Cho, H.H. Nahm, C.H. Park, I.K. Jeong, S. Park, T.E. Hong, S. Kuroda, S.Y. Jeong, Reversible ferromagnetic spin ordering governed by hydrogen in Co-doped ZnO semiconductor. Appl. Phys. Lett. 95, 172514 (2009)

    Article  Google Scholar 

  5. J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys. Rev. B 72, 075203 (2005)

    Article  Google Scholar 

  6. H. Peng, J. Li, S.S. Li, J.B. Xia, Possible origin of ferromagnetism in undoped anatase TiO2. Phys. Rev. B 79, 092411 (2009)

    Article  Google Scholar 

  7. R.C. Pawar, D.H. Choi, J.S. Lee, C.S. Lee, Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 151, 167e180 (2015)

    Article  Google Scholar 

  8. S.B. Ogale, R.J. Choudhary, J.P. Bhuban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S.D. Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ. Phys. Rev. Lett. 91, 077205 (2003)

    Article  Google Scholar 

  9. P. Venkateswara Reddy, S. Venkatramana Reddy, B. Sankara Reddy, Synthesis and properties of (Ni, Al) co-doped nanoparticles. J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5172-3

    Google Scholar 

  10. J.Y. Patil, A.V. Rajgure, L.K. Bagal, R.C. Pawar, I.S. Mulla, S.S. Suryavanshi, Structural, morphological, and gas response properties of citrate gel synthesized nanocrystalline ZnO and Zn0.9Cd0.10 materials. Ceram. Int. 39, 4383 (2013)

    Article  Google Scholar 

  11. G.D. Khuspe, R.D. Sakhare, S.T. Navale, M.A. Chougule, Y.D. Kolekar, R.N. Mulik, R.C. Pawar, C.S. Lee, V.B. Patil, Nanostructured SnO2 thin films for NO2 gas sensing applications. Ceram. Int. 39, 8673 (2013)

    Article  Google Scholar 

  12. A.V. Chichagov et al., Kristallographiya 35, 610 (1990)

    Google Scholar 

  13. A.A. Bolzan, C. Fong, B.J. Kennedy, C.J. Howard, Structural studies of rutile-type metal dioxides. Acta Crystallogr. B 53, 373 (1997)

    Article  Google Scholar 

  14. M. Parthibavarman, B. Renganathan, D. Sastikumar, Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique. Curr. Appl. Phys. 13, 1537–1544 (2013)

    Article  Google Scholar 

  15. F. Gu, S.F. Wang, M.K. Leu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Luminescent properties of Mn2+-doped SnO2 nanoparticles. Inorg. Chem. Commun. 6, 882 (2003)

    Article  Google Scholar 

  16. A. DiéGuez, A. Romano-Rodríguez, A. Vilà, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550 (2001)

    Article  Google Scholar 

  17. S. Thansanvarkan, P. Mangkortang, S. Choopun, N. Mangkorntong, Characterization of SnO2 nanowires synthesized from SnO by carbothermal reduction process. Ceram. Int. 34, 1127 (2008)

    Article  Google Scholar 

  18. F.H. Aragón, J.A.H. Coaquira, P. Hidalgo, S.W. da Silva, S.L.M. Brito, D. Gouvêa, P.C. Morais, Evidences of the evolution from solid solution to surface segregation in Ni-doped SnO2 nanoparticles using Raman spectroscopy. J. Raman Spectrosc. 42, 2011 (1081)

    Google Scholar 

  19. A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, A. Dinia, Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique. J. Phys. Chem. C 111, 2924 (2007)

    Article  Google Scholar 

  20. S. Das, S. Kar, S. Chaudhuri, Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process. J. Appl. Phys. 99, 114303 (2006)

    Article  Google Scholar 

  21. K.C. Verma, R.K. Kotnala, Realizing ferromagnetic ordering in SnO2 and ZnO nanostructures with Fe Co, Ce ions. Phys. Chem. Chem. Phys. 18, 17565 (2016)

    Article  Google Scholar 

  22. K. Nomura, E. Kuzmann, C.A. Barrero, S. Stichleutner, Z. Homonnay, 57Fe Mössbauer study of sol–gel synthesized Sn1−x−y FexSbyO2−δ powders. Hyperfine Interact. 184, 57 (2008)

    Article  Google Scholar 

  23. R.H.R. Castro, P. Hidalgo, J.A.H. Coaquira, J. Bettini, D. Zanchet, D. Gouvêa, Surface segregation in SnO2–Fe2O3 nanopowders and effects in Mössbauer spectroscopy. Eur. J. Inorg. Chem. 11, 2134 (2005)

    Article  Google Scholar 

  24. B. Gržta, E. Tkalčec, C. Gobbert, M. Takeda, M. Takahashi, K. Nomura, M. Jakšič, Structural studies of nanocrystalline SnO2 doped with antimony: XRD and Mössbauer spectroscopy. J. Phys. Chem. Solids 63, 765 (2002)

    Article  Google Scholar 

  25. F.H. Aragón, J.A.H. Coaquira, R. Cohen, L.C.C.M. Nagamine, P. Hidalgo, S.L.M. Brito, D. Gouvêa, Structural and hyperfine properties of Ni-doped SnO2 nanoparticles. Hyperfine Interact. 211, 77 (2012)

    Article  Google Scholar 

  26. J.J. Beltran, L.C. Sanchez, J. Osorio, L. Tirado, E.M. Baggio-Saitovitch, C.A. Barrero, Crystallographic and magnetic properties of Fe-doped SnO2 nanopowders obtained by a sol–gel method. J. Mater. Sci. 45, 5002 (2010)

    Article  Google Scholar 

  27. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005)

    Article  Google Scholar 

  28. X.L. Wang, Z.X. Dai, Z. Zeng, Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co). J. Phys. Condens. Matter 20, 045214 (2008)

    Article  Google Scholar 

  29. R. Janisch, N.A. Spaldin, Understanding ferromagnetism in Co-doped TiO2 anatase from first principles. Phys. Rev. B 73, 035201 (2006)

    Article  Google Scholar 

  30. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by UGC Govt. of India. The authors want to thank Sastra University for FESEM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inpasalini, M.S., Sharma, L.K., Roychowdhury, A. et al. Influence of magnetic ion doping on structural, optical, magnetic and hyperfine properties of nanocrystalline SnO2 based dilute magnetic semiconductors. J Mater Sci: Mater Electron 28, 3285–3292 (2017). https://doi.org/10.1007/s10854-016-5921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5921-3

Keywords

Navigation