Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 12418–12426 | Cite as

Role of phosphine free solvents in structural and morphological properties of CuInSe2 nanoparticles



Copper indium di selenide (CuInSe2) nanoparticles were synthesized using a facile colloidal non-phosphine solvent strategy. Mixture of oleylamine (OLAM), oleic acid (OLA), 1-octadecene (1-ODE) with different proportions were employed as solvents and as well as capping agents. Influence of these solvents on the structure and morphological properties of the synthesized CuInSe2 NPs was analysed. It was found that the solvents considerably play important role on the final morphology of the nanoparticles. OLAM assisted synthesis of CuInSe2 nanoparticles results nanoplate like morphology whereas replacing certain volume of OLAM by OLA and 1-ODE provide a bunch of hierarchical structures. The optical bandgap of the synthesized nanoparticles vary with the nature of the solvents. XRD analysis of the synthesized nanoparticles confirms the presence of chalcopyrite structure. Raman analysis shows the appearance of peak at 171 cm−1 due to the A1 mode of CuInSe2. SEM analysis clearly reveals the influence of solvents on the determination of morphology of the synthesized nanoparticles. EDX and elemental mapping analysis shows presence of nearly stoichiometric composition which was dependent on the nature of solvents used.


Oleylamine Semiconductor Nanoparticles In2Se3 Cu2Se Perovskite Solar Cell 



The authors sincerely thank DST-SERI (DST/TMC/SERI/FR/90) Govt of India for funding the research. J. Ramkumar and S. Ananthakumar sincerely thank Ministry of New and Renewable Energy (MNRE), Govt. of India for providing fellowships under National Renewable Energy Fellowship (NREF) scheme for the doctoral studies.


  1. 1.
    J. Chang, E.R. Waclawik, Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv. 4, 23505–23527 (2014)CrossRefGoogle Scholar
  2. 2.
    A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43(2), 190–200 (2010)CrossRefGoogle Scholar
  3. 3.
    F. Gao, S. Ren, J. Wang, The renaissance of hybrid solar cells: progresses, challenges and perspectives. Energy Environ. Sci. 6, 2020–2040 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Gratzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt. 8, 171–185 (2000)CrossRefGoogle Scholar
  5. 5.
    P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112(48), 18737–18753 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Petrovic, V. Chellappan, S. Ramakrishna, Perovskites: solar cells and engineering applications—materials and device developments. Sol. Energy 122, 678–699 (2015)CrossRefGoogle Scholar
  7. 7.
    Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, Development of CuInSe2 nanocrystal and nanoring Inks for low-cost solar cells. Nano Lett. 8, 2982–2987 (2008)CrossRefGoogle Scholar
  8. 8.
    C.J. Stolle, T.B. Harvey, D.R. Pernik, J.I. Hibbert, J. Du, D.J. Rhee, V.A. Akhavan, R.D. Schaller, B.A. Korgel, Multiexciton solar cells of CuInSe2 nanocrystals. J. Phys. Chem. Lett. 5(2), 304–309 (2014)CrossRefGoogle Scholar
  9. 9.
    J.-Y. Chang, M.-H. Tsai, K.-L. Ou, C.-H. Yang, J.-C. Fan, Synthesis of CuInSe2 ternary nanostructures: a combined oriented attachment and ligand protection strategy. Cryst. Eng. Commun. 13, 4236–4243 (2011)CrossRefGoogle Scholar
  10. 10.
    C.-F. Du, T. You, L. Jiang, S.-Q. Yang, K. Zou, K.-L. Han, W.-Q. Deng, Controllable synthesis of ultrasmall CuInSe2 quantum dots for photovoltaic application. RSC Adv. 4, 33855–33860 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.-O. Velthaus, H.-W. Schock, ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl. Phys. Lett. 62, 597–599 (1993)CrossRefGoogle Scholar
  12. 12.
    L.L. Kazmerski, F.R. White, G.K. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells. Appl. Phys. Lett. 29, 268–270 (1976)CrossRefGoogle Scholar
  13. 13.
    H. Zhong, Z. Wang, E. Bovero, Lu Zhenghong, F.C.J.M. Veggel, G.D. Scholes, Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence. J. Phys. Chem. C 115(25), 12396–12402 (2011)CrossRefGoogle Scholar
  14. 14.
    J. Park, C. Dvoracek, K.H. Lee, J.F. Galloway, H.C. Bhang, M.G. Pomper, P.C. Searson, CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging. Small 18, 3148–3152 (2011)CrossRefGoogle Scholar
  15. 15.
    J.Y. Kim, J. Yang, J.H. Yu, W. Baek, C.H. Lee, H.J. Son, T. Hyeon, M.J. Ko, Highly efficient copper–indium–selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers. ACS Nano 9, 11286–11295 (2015)CrossRefGoogle Scholar
  16. 16.
    P.M. Allen, M.G. Bawendi, Ternary I–III–VI2 quantum dots luminescent in the red to near-infrared. J. Am. Chem. Soc. 130(29), 9240–9241 (2008)CrossRefGoogle Scholar
  17. 17.
    J. Ramkumar, S. Ananthakumar, S.M. Babu, Hydrothermal synthesis and characterization of CuInSe2 nanoparticles using ethylenediamine as capping agent. Sol. Energy 106, 177–183 (2014)CrossRefGoogle Scholar
  18. 18.
    C.-C. Wu, C.-Y. Shiau, D.W. Ayele, W.-N. Su, M.-Y. Cheng, C.-Y. Chiu, B.-J. Hwang, Rapid microwave-enhanced solvothermal process for synthesis of CuInSe2 particles and its morphologic manipulation. Chem. Mater. 22(14), 4185–4190 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Ananthakumar, J. Ramkumar, S.M. Babu, Synthesis of thiol modified CdSe nanoparticles/P3HT hybrid solar cell structures. Mater. Sci. Semicond. Process. 22, 44–49 (2014)CrossRefGoogle Scholar
  20. 20.
    P.H.C. Camargo, Y.H. Lee, U. Jeong, Z. Zou, Y. Xia, Cation exchange: a simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 23(6), 2985–2992 (2007)CrossRefGoogle Scholar
  21. 21.
    C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. 115(19), 8706–8715 (1993)CrossRefGoogle Scholar
  22. 22.
    J. Tang, S. Hinds, S.O. Kelley, E.H. Sargent, Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(In, Ga)Se2 nanoparticles. Chem. Mater. 20(22), 6906–6910 (2008)CrossRefGoogle Scholar
  23. 23.
    B. Koo, R.N. Patel, B.A. Korgel, Synthesis of CuInSe2 nanocrystals with trigonal pyramidal shape. J. Am. Chem. Soc. 131, 3134–3135 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Jiang, J.-S. Lee, D.V. Talapin, Soluble precursors for CuInSe2, CuIn1−xGaxSe2, and Cu2ZnSn(S, Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands. J. Am. Chem. Soc. 134, 5010–5013 (2012)CrossRefGoogle Scholar
  25. 25.
    E. Witt, J. Kolny-Olesiak, Recent developments in colloidal synthesis of CuInSe2 nanoparticles. Chem. Eur. J. 19, 9746–9753 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Zhao, C. Burda, Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy Environ. Sci. 5, 5564–5576 (2012)CrossRefGoogle Scholar
  27. 27.
    F.-J. Fan, L. Wu, S.-H. Yu, Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 7, 190–208 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Xie, M. Rutherford, X. Peng, Formation of high-quality I–III–VI2 semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 131(15), 5691–5697 (2009)CrossRefGoogle Scholar
  29. 29.
    Y. Liu, D. Yao, L. Shen, H. Zhang, X. Zhang, B. Yang, Alkyl-thiol enabled Se powder dissolution in oleylamine at room temperature for the phosphine free synthesis of copper based quaternary selenide nanocrystals. J. Am. Chem. Soc. 134(17), 7207–7210 (2012)CrossRefGoogle Scholar
  30. 30.
    B.C. Walker, R. Agrawal, Contamination-free solutions of selenium in amines for nanoparticles synthesis. Chem. Commun. 50, 8331–8334 (2014)CrossRefGoogle Scholar
  31. 31.
    C. Rincon, F.J. Ramirez, Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry. J. Appl. Phys. 72, 4321–4324 (1992)CrossRefGoogle Scholar
  32. 32.
    H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang, Y. Li, A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent. Nanotechnology 18, 1–6 (2006)Google Scholar
  33. 33.
    B. Hou, D. Benito-Alifonso, R. Webster, D. Cherns, M.C. Galan, D.J. Fermin, Rapid phosphine-free synthesis of CdSe quantum dots: promoting the generation of Se precursors using a radical initiator. J. Mater. Chem. A 2, 6879–6886 (2014)CrossRefGoogle Scholar
  34. 34.
    F.-J. Fan, Y.-X. Wang, X.-J. Liu, L. Wu, S.-H. Yu, Large scale colloidal synthesis of non-stoichiometric Cu2ZnSnSe4 nanocrystals for thermoelectric applications. Adv. Mater. 24, 6158–6163 (2012)CrossRefGoogle Scholar
  35. 35.
    W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, Q. Yang, Cu2−xSe nanooctahedra: controlled synthesis and optoelectronic properties. CrystEngComm 17, 1975–1981 (2015)CrossRefGoogle Scholar
  36. 36.
    J.H. Warner, Self-assembly of ligand-free PbS nanocrystals into nanorods and their nanosculpturing by electron-beam irradiation. Adv. Mater. 20(4), 784–787 (2008)CrossRefGoogle Scholar
  37. 37.
    P.D. Cozzoli, A. Kornowski, H. Weller, Low-temperature synthesis and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 125, 14539–14548 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Ram Kumar
    • 1
    • 2
  • S. Ananthakumar
    • 1
  • S. Moorthy Babu
    • 1
  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia
  2. 2.Centre of Excellence for Energy ResearchSathyabama UniversityChennaiIndia

Personalised recommendations