Skip to main content
Log in

Role of phosphine free solvents in structural and morphological properties of CuInSe2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper indium di selenide (CuInSe2) nanoparticles were synthesized using a facile colloidal non-phosphine solvent strategy. Mixture of oleylamine (OLAM), oleic acid (OLA), 1-octadecene (1-ODE) with different proportions were employed as solvents and as well as capping agents. Influence of these solvents on the structure and morphological properties of the synthesized CuInSe2 NPs was analysed. It was found that the solvents considerably play important role on the final morphology of the nanoparticles. OLAM assisted synthesis of CuInSe2 nanoparticles results nanoplate like morphology whereas replacing certain volume of OLAM by OLA and 1-ODE provide a bunch of hierarchical structures. The optical bandgap of the synthesized nanoparticles vary with the nature of the solvents. XRD analysis of the synthesized nanoparticles confirms the presence of chalcopyrite structure. Raman analysis shows the appearance of peak at 171 cm−1 due to the A1 mode of CuInSe2. SEM analysis clearly reveals the influence of solvents on the determination of morphology of the synthesized nanoparticles. EDX and elemental mapping analysis shows presence of nearly stoichiometric composition which was dependent on the nature of solvents used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Chang, E.R. Waclawik, Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv. 4, 23505–23527 (2014)

    Article  Google Scholar 

  2. A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43(2), 190–200 (2010)

    Article  Google Scholar 

  3. F. Gao, S. Ren, J. Wang, The renaissance of hybrid solar cells: progresses, challenges and perspectives. Energy Environ. Sci. 6, 2020–2040 (2013)

    Article  Google Scholar 

  4. M. Gratzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt. 8, 171–185 (2000)

    Article  Google Scholar 

  5. P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112(48), 18737–18753 (2008)

    Article  Google Scholar 

  6. M. Petrovic, V. Chellappan, S. Ramakrishna, Perovskites: solar cells and engineering applications—materials and device developments. Sol. Energy 122, 678–699 (2015)

    Article  Google Scholar 

  7. Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, Development of CuInSe2 nanocrystal and nanoring Inks for low-cost solar cells. Nano Lett. 8, 2982–2987 (2008)

    Article  Google Scholar 

  8. C.J. Stolle, T.B. Harvey, D.R. Pernik, J.I. Hibbert, J. Du, D.J. Rhee, V.A. Akhavan, R.D. Schaller, B.A. Korgel, Multiexciton solar cells of CuInSe2 nanocrystals. J. Phys. Chem. Lett. 5(2), 304–309 (2014)

    Article  Google Scholar 

  9. J.-Y. Chang, M.-H. Tsai, K.-L. Ou, C.-H. Yang, J.-C. Fan, Synthesis of CuInSe2 ternary nanostructures: a combined oriented attachment and ligand protection strategy. Cryst. Eng. Commun. 13, 4236–4243 (2011)

    Article  Google Scholar 

  10. C.-F. Du, T. You, L. Jiang, S.-Q. Yang, K. Zou, K.-L. Han, W.-Q. Deng, Controllable synthesis of ultrasmall CuInSe2 quantum dots for photovoltaic application. RSC Adv. 4, 33855–33860 (2014)

    Article  Google Scholar 

  11. L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.-O. Velthaus, H.-W. Schock, ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl. Phys. Lett. 62, 597–599 (1993)

    Article  Google Scholar 

  12. L.L. Kazmerski, F.R. White, G.K. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells. Appl. Phys. Lett. 29, 268–270 (1976)

    Article  Google Scholar 

  13. H. Zhong, Z. Wang, E. Bovero, Lu Zhenghong, F.C.J.M. Veggel, G.D. Scholes, Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence. J. Phys. Chem. C 115(25), 12396–12402 (2011)

    Article  Google Scholar 

  14. J. Park, C. Dvoracek, K.H. Lee, J.F. Galloway, H.C. Bhang, M.G. Pomper, P.C. Searson, CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging. Small 18, 3148–3152 (2011)

    Article  Google Scholar 

  15. J.Y. Kim, J. Yang, J.H. Yu, W. Baek, C.H. Lee, H.J. Son, T. Hyeon, M.J. Ko, Highly efficient copper–indium–selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers. ACS Nano 9, 11286–11295 (2015)

    Article  Google Scholar 

  16. P.M. Allen, M.G. Bawendi, Ternary I–III–VI2 quantum dots luminescent in the red to near-infrared. J. Am. Chem. Soc. 130(29), 9240–9241 (2008)

    Article  Google Scholar 

  17. J. Ramkumar, S. Ananthakumar, S.M. Babu, Hydrothermal synthesis and characterization of CuInSe2 nanoparticles using ethylenediamine as capping agent. Sol. Energy 106, 177–183 (2014)

    Article  Google Scholar 

  18. C.-C. Wu, C.-Y. Shiau, D.W. Ayele, W.-N. Su, M.-Y. Cheng, C.-Y. Chiu, B.-J. Hwang, Rapid microwave-enhanced solvothermal process for synthesis of CuInSe2 particles and its morphologic manipulation. Chem. Mater. 22(14), 4185–4190 (2010)

    Article  Google Scholar 

  19. S. Ananthakumar, J. Ramkumar, S.M. Babu, Synthesis of thiol modified CdSe nanoparticles/P3HT hybrid solar cell structures. Mater. Sci. Semicond. Process. 22, 44–49 (2014)

    Article  Google Scholar 

  20. P.H.C. Camargo, Y.H. Lee, U. Jeong, Z. Zou, Y. Xia, Cation exchange: a simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 23(6), 2985–2992 (2007)

    Article  Google Scholar 

  21. C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. 115(19), 8706–8715 (1993)

    Article  Google Scholar 

  22. J. Tang, S. Hinds, S.O. Kelley, E.H. Sargent, Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(In, Ga)Se2 nanoparticles. Chem. Mater. 20(22), 6906–6910 (2008)

    Article  Google Scholar 

  23. B. Koo, R.N. Patel, B.A. Korgel, Synthesis of CuInSe2 nanocrystals with trigonal pyramidal shape. J. Am. Chem. Soc. 131, 3134–3135 (2009)

    Article  Google Scholar 

  24. C. Jiang, J.-S. Lee, D.V. Talapin, Soluble precursors for CuInSe2, CuIn1−xGaxSe2, and Cu2ZnSn(S, Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands. J. Am. Chem. Soc. 134, 5010–5013 (2012)

    Article  Google Scholar 

  25. E. Witt, J. Kolny-Olesiak, Recent developments in colloidal synthesis of CuInSe2 nanoparticles. Chem. Eur. J. 19, 9746–9753 (2013)

    Article  Google Scholar 

  26. Y. Zhao, C. Burda, Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy Environ. Sci. 5, 5564–5576 (2012)

    Article  Google Scholar 

  27. F.-J. Fan, L. Wu, S.-H. Yu, Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 7, 190–208 (2014)

    Article  Google Scholar 

  28. R. Xie, M. Rutherford, X. Peng, Formation of high-quality I–III–VI2 semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 131(15), 5691–5697 (2009)

    Article  Google Scholar 

  29. Y. Liu, D. Yao, L. Shen, H. Zhang, X. Zhang, B. Yang, Alkyl-thiol enabled Se powder dissolution in oleylamine at room temperature for the phosphine free synthesis of copper based quaternary selenide nanocrystals. J. Am. Chem. Soc. 134(17), 7207–7210 (2012)

    Article  Google Scholar 

  30. B.C. Walker, R. Agrawal, Contamination-free solutions of selenium in amines for nanoparticles synthesis. Chem. Commun. 50, 8331–8334 (2014)

    Article  Google Scholar 

  31. C. Rincon, F.J. Ramirez, Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry. J. Appl. Phys. 72, 4321–4324 (1992)

    Article  Google Scholar 

  32. H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang, Y. Li, A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent. Nanotechnology 18, 1–6 (2006)

    Google Scholar 

  33. B. Hou, D. Benito-Alifonso, R. Webster, D. Cherns, M.C. Galan, D.J. Fermin, Rapid phosphine-free synthesis of CdSe quantum dots: promoting the generation of Se precursors using a radical initiator. J. Mater. Chem. A 2, 6879–6886 (2014)

    Article  Google Scholar 

  34. F.-J. Fan, Y.-X. Wang, X.-J. Liu, L. Wu, S.-H. Yu, Large scale colloidal synthesis of non-stoichiometric Cu2ZnSnSe4 nanocrystals for thermoelectric applications. Adv. Mater. 24, 6158–6163 (2012)

    Article  Google Scholar 

  35. W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, Q. Yang, Cu2−xSe nanooctahedra: controlled synthesis and optoelectronic properties. CrystEngComm 17, 1975–1981 (2015)

    Article  Google Scholar 

  36. J.H. Warner, Self-assembly of ligand-free PbS nanocrystals into nanorods and their nanosculpturing by electron-beam irradiation. Adv. Mater. 20(4), 784–787 (2008)

    Article  Google Scholar 

  37. P.D. Cozzoli, A. Kornowski, H. Weller, Low-temperature synthesis and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 125, 14539–14548 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank DST-SERI (DST/TMC/SERI/FR/90) Govt of India for funding the research. J. Ramkumar and S. Ananthakumar sincerely thank Ministry of New and Renewable Energy (MNRE), Govt. of India for providing fellowships under National Renewable Energy Fellowship (NREF) scheme for the doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Moorthy Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram Kumar, J., Ananthakumar, S. & Babu, S.M. Role of phosphine free solvents in structural and morphological properties of CuInSe2 nanoparticles. J Mater Sci: Mater Electron 27, 12418–12426 (2016). https://doi.org/10.1007/s10854-016-5915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5915-1

Keywords

Navigation