Skip to main content
Log in

Hydrothermal synthesis of tin-doped indium oxide nanoparticles using pamoic acid as an organic additive and their photoluminescence properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a facile hydrothermal method using the disodium salt of pamoic acid (Na2PA) as an organic additive, In(NO3)3·xH2O as an indium precursor, and SnCl2·2H2O as a tin precursor for preparation of ITO nanoparticles (NPs) at low temperature (200 °C). After drying at 110 °C, the as hydrothermally synthesized materials were found to be monodisperse spherical NPs with diameters in the range of ca. 30–40 nm as an intermediate NP product, as confirmed by field emission scanning electron microscopy, transmission electron microscopy and XRD analysis. The XRD analysis confirmed the presence of InOOH in the intermediate NPs. For comparison, the formation of the intermediate NPs under the same reaction conditions was also examined using two analogs of PA instead of Na2PA, i.e., 3-hydroxy-2-naphthalene carboxylic acid (3H2NA) or 2-naphthol (2NP). These additives yielded spherical NPs but with different sizes and different homogeneities compared to the NPs formed using Na2PA. In terms of size and homogeneity of the intermediate NPs, the additives followed the order Na2PA > 2NP > 3H2NA. However, in photoluminescence (PL) studies, the intermediate prepared using 3H2NA showed the highest intensity followed by the intermediates formed using Na2PA and 2NP. After calcination at 420 °C, only the NPs obtained with Na2PA were converted to ITONPs; the other NPs remained in the InOOH form. These results correlated with the corresponding TGA analysis. Interestingly, the ITONPs prepared using Na2PA did not change their morphology during calcination at 420 °C. The morphology of the ITONPs prepared using Na2PA was found to be comparable in terms of homogeneity and shape to that of a commercially available ITO nanopowder. However, the ITONPs prepared using Na2PA showed superior PL intensities compared to the commercial ITONPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Hotovy, J. Hupkes, W. Bottler, E. Marins, L. Spiess, T. Kupsd, V. Smirnov, I. Hotovy, J. Kovac, Appl. Surf. Sci. 269, 81–87 (2013)

    Article  Google Scholar 

  2. Y. Yang, K. Long, F. Kong, J. Fan, T. Qiu, Appl. Surf. Sci. 309, 250–254 (2014)

    Article  Google Scholar 

  3. J. Hong, Y. Guo, J. Shin, T.W. Kim, Trans. Electr. Electron. Mater. 17, 37–40 (2016)

    Article  Google Scholar 

  4. T. Minami, Thin Solid Films 516, 5822–5828 (2008)

    Article  Google Scholar 

  5. S. Marikkannu, A. Ayeshamariam, V.S. Vidhya, N. Sethupathy, S. Piraman, J. Photonics Spintron. 3, 4–9 (2014)

    Google Scholar 

  6. M. Rani, N.K. Sharma, AIP Conf. Proc. 1536, 1117–1118 (2013)

    Article  Google Scholar 

  7. M.A. Aziz, M. Sohail, M. Oyama, W. Mahfoz, Electroanalysis 27, 1268–1275 (2015)

    Article  Google Scholar 

  8. M.A. Aziz, T. Selvaraju, H. Yang, Electroanalysis 19, 1543–1546 (2007)

    Article  Google Scholar 

  9. V. VasanthiPillay, K. Vijayalakshmi, J. Mater. Sci. Mater. Electron. 24, 1895–1899 (2013)

    Article  Google Scholar 

  10. J.W. Bae, H.J. Kim, J.S. Kim, N.E. Lee, G.Y. Yeom, Vacuum 56, 77–81 (2000)

    Article  Google Scholar 

  11. Z. Ghorannevis, E. Akbarnejad, M. Ghoranneviss, J. Theor. Appl. Phys. 9, 285–290 (2015)

    Article  Google Scholar 

  12. J. Kim, J. Choi, S. Hong, J. Han, Y. Kim, J. Korean Phys. Soc. 57, 1794–1798 (2010)

    Article  Google Scholar 

  13. N. Al-Dahoudi, M.A. Aegerter, J. Solgel Sci. Technol. 26, 693–697 (2003)

    Article  Google Scholar 

  14. S. Heusing, P.W. Oliveira, E. Kraker, A. Haase, C. Palfinger, M. Veith, Thin Sol. Film. 518, 1164–1169 (2009)

    Article  Google Scholar 

  15. H. Lu, J. Mao, Y. Chiang, Surf. Coat. Technol. 231, 526–530 (2013)

    Article  Google Scholar 

  16. M. Wei, R. Huang, L. Guo, J. Electroanal. Chem. 664, 156–160 (2012)

    Article  Google Scholar 

  17. M. Mierzwa, E. Lamourouxb, I. Vakulko, P. Durand, M. Etienne, Electrochim. Acta 202, 55–65 (2016)

    Article  Google Scholar 

  18. H. Usui, T. Sasaki, N. Koshizaki, J. Phys. Chem. B 110, 12890–12895 (2006)

    Article  Google Scholar 

  19. B. Shong, N. Shin, Y. Lee, K.H. Ahn, Y. Lee, J. Supercrit. Fluids 113, 39–43 (2016)

    Article  Google Scholar 

  20. A. Solieman, S. Alamri, M. Aegerter, J. Nanopart. Res. 12, 2381–2385 (2010)

    Article  Google Scholar 

  21. G. Bühler, D. Thölmann, C. Feldmann, Adv. Mater. 19, 2224–2227 (2007)

    Article  Google Scholar 

  22. P.S. Devi, M. Chatterjee, D. Ganguli, Mater. Lett. 55, 205–210 (2002)

    Article  Google Scholar 

  23. M. Duta, M. Anastasescu, J.M. Calderon-Moreno, L. Predoana, S. Preda, M. Nicolescu, H. Stroescu, V. Bratan, I. Dascalu, E. Aperathitis, M. Modreanu, M. Zaharescu, M. Gartner, J. Mater. Sci. Mater. Electron. 27, 4913–4922 (2016)

    Article  Google Scholar 

  24. D. Choi, S. Hong, Y. Son, Materials 7, 7662–7669 (2014)

    Article  Google Scholar 

  25. P. Marchand, N.M. Makwana, C.J. Tighe, R.I. Gruar, I.P. Parkin, C.J. Carmalt, J.A. Darr, ACS Comb Sci. 18, 130–137 (2016)

    Article  Google Scholar 

  26. Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, Y. Qian, Cryst. Growth Des. 5, 147–150 (2005)

    Article  Google Scholar 

  27. K. Gao, Y. Zhu, D. Tong, Li Tian, Z. Wang, X. Wang, Chin. Chem. Lett. 25, 383–386 (2014)

    Article  Google Scholar 

  28. T. Sasaki, M. Nakaya, K. Kanie, A. Muramatsu, Mater. Trans. 50, 2808–2812 (2009)

    Article  Google Scholar 

  29. B.G. DeLacy, S. Lacey, D. Zhang, E. Valdes, K. Hoang, Mater. Lett. 117, 108–111 (2014)

    Article  Google Scholar 

  30. M.S. Bakshi, S. Sachar, G. Kaur, P. Bhandari, G. Kaur, M.C. Biesinger, F. Possmayer, N.O. Petersen, Cryst. Growth Des. 8, 1713–1719 (2008)

    Article  Google Scholar 

  31. P. U. Londhe, M. More, N. B. Chaure, in International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (ICANMEET-2013), Chennai, India in association with DRDO, New Delhi, India, 24th–26th, July, pp. 317–319

  32. M.A. Aziz, J. Kim, M. Oyama, Gold Bull. 47, 127–132 (2014)

    Article  Google Scholar 

  33. M.A. Aziz, J. Kim, M.N. Shaikh, M. Oyama, F.O. Bakare, Z.H. Yamani, Gold Bull. 48, 85–92 (2015)

    Article  Google Scholar 

  34. Y. Jin, Q. Yi, Y. Ren, X. Wang, Z. Ye, Nanoscale Res. Lett. 8, 153 (2013). http://www.nanoscalereslett.com/content/8/1/153

Download references

Acknowledgments

The authors acknowledge funding support from King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM): Project No. 14-ENV332-04, as part of the National Science, Technology and Innovation Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Abdul Aziz or Md. Hasan Zahir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, M.A., Zahir, M.H., Shaikh, M.N. et al. Hydrothermal synthesis of tin-doped indium oxide nanoparticles using pamoic acid as an organic additive and their photoluminescence properties. J Mater Sci: Mater Electron 28, 3226–3233 (2017). https://doi.org/10.1007/s10854-016-5912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5912-4

Keywords

Navigation