Effect of polyaniline concentration on the photoconversion efficiency of nano-TiO2 based dye sensitized solar cells

  • H. K. Seo
  • Farheen
  • S. A. Ansari
  • Nazish Parveen
  • Shabeena Qadir
  • H. Fouad
  • H. S. Shin
  • Moo Hwan Cho
  • S. G. Ansari
  • Z. A. Ansari


Extensive research have been made in improving the dye sensitized solar cells (DSSC) performance by designing, tailoring and enhancing the photoconversion properties of the matrix. The approaches used are material synthesis, dye permutation combinations, use of natural extracts or using several sensitizers. The polymers are also being explored in this regards in their pristine or composite forms. Therefore, in this study an attempt is made to synthesize a mesoporous polyaniline–titanium dioxide (PANI–TiO2) nanocomposites with one pot synthesis approach at different concentrations of PANI (0.3–0.7 ml). Titanium isopropoxide was used as precursor for TiO2 with aniline and the material was synthesized at ice bath temperature. Morphological observations showed that the composite is a mesoporous material with tubular structure where TiO2 particles are seen entrapped in the polymer matrix and found that intercalation can be tailored with PANI concentration. Structural, functional and optical characterization indicate anatase phase of TiO2, with several functional bands that can help in dye interaction and broad absorption bands within visible region. The photocurrent-voltage response was measured with simulated light and source-meter. It is interesting to note that increasing PANI concentration enhances the mesoporous structure and hence increases the dye loading capacity and photoconductivity of the material. The efficiency increased by about 22 % with addition of 0.5 ml of PANI from 0.3 ml. The proposed study has indicated that such material have the potential to be used for DSSC fabrication with which the device performance can further be increased to a better levels.


TiO2 PANI Titanium Isopropoxide Emeraldine Base Photoconversion Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Z. A. Ansari acknowledges the financial support received from Department of Science and Technology, India through a major research project (SR/SO/BB-0072/2012). The authors extend their appreciation to International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-001. The authors acknowledge the measurement support from the Central Instrumentation Facility, Jamia Millia Islamia, India.


  1. 1.
    B. O’Regan, M. Grätzel, Nature 335, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    C.G. Garcia, A.S. Polo, N.Y. Murakami Iha, J. Photochem. Photobiol. A 160, 87–91 (2003)CrossRefGoogle Scholar
  3. 3.
    K. Wongcharee, V. Meeyoo, S. Chavadej, Sol. Energy Mater. Sol. Cells 91, 566–571 (2007)CrossRefGoogle Scholar
  4. 4.
    N.M. Gomez-Ortız, I.A. Vazquez-Maldonado, A.R. Perez-Espadas, G.J. Mena-Rejon, J.A. Azamar-Barrios, G. Oskam, Sol. Energy Mater. Sol. Cells 94, 40–44 (2010)CrossRefGoogle Scholar
  5. 5.
    D. Zhang, S.M. Lanier, J.A. Downing, J.L. Avent, J. Lum, J.L. McHale, J. Photochem. Photobiol. A 195, 72–80 (2008)CrossRefGoogle Scholar
  6. 6.
    C. Qin, A.E. Clark, Chem. Phys. Lett. 438, 26–30 (2007)CrossRefGoogle Scholar
  7. 7.
    X. Chen, J. Guob, X. Peng, M. Guo, Y. Xu, L. Shi, C. Liang, L. Wang, Y. Gao, S. Sun, S. Cai, J. Photochem. Photobiol. A 171, 231–236 (2005)CrossRefGoogle Scholar
  8. 8.
    M.R. Narayan, Renew. Sustain. Energy Rev. 16, 208–215 (2012)Google Scholar
  9. 9.
    P.M. Sirimanne, M.K.I. Senevirathna, E.V.A. Premalal, P.K.D.D.P. Pitigala, V. Sivakumar, K. Tennakone, J. Photochem. Photobiol. A 177, 324–327 (2006)CrossRefGoogle Scholar
  10. 10.
    H. Zhou, L. Wu, Y. Gao, T. Ma, J. Photochem. Photobiol. A 219, 188–194 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Kickelbick, Prog. Polym. Sci. 28, 83–114 (2003)CrossRefGoogle Scholar
  12. 12.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)CrossRefGoogle Scholar
  13. 13.
    G.S. Kim, S.G. Ansari, H.K. Seo, Y.S. Kim, H.S. Shin Jr., Appl. Phys. 102, 084302 (2007)CrossRefGoogle Scholar
  14. 14.
    H.K. Seo, G.S. Kim, S.G. Ansari, Y.S. Kim, H.S. Shin, K.H. Shim, E.K. Suh, Sol. Energy Mater. Sol. Cells 92, 1533 (2008)CrossRefGoogle Scholar
  15. 15.
    K.E. Lee, M.A. Gomez, S. Elouatik, G.P. Demopoulos, Langmuir 26(12), 9575–9583 (2010)CrossRefGoogle Scholar
  16. 16.
    M.J. Lundqvist, E. Galoppini, G.J. Meyer, P. Persson, J. Phys. Chem. A 111, 1487–1497 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Oftadeh, L. Tavakolizadeh, Int. Nano Lett. 2, 5–9 (2012)CrossRefGoogle Scholar
  18. 18.
    M.J. Yoon, J. Chin. Chem. Soc. TAIP 56, 449–454 (2009)CrossRefGoogle Scholar
  19. 19.
    C. Baik, D. Kim, M.S. Kang, K. Song, S.O. Kang, J. Ko, Tetrahedron 65, 5302–5307 (2009)CrossRefGoogle Scholar
  20. 20.
    Y.E. Miao, W. Fan, D. Chen, T. Liu, ACS Appl. Mater. Interfaces 5, 4423 (2013)CrossRefGoogle Scholar
  21. 21.
    G.A. Snook, P. Kao, P.A.S. Best, J. Power Sources 196, 1 (2011)CrossRefGoogle Scholar
  22. 22.
    N. Parveen, N. Mahato, M.O. Ansari, M.H. Cho, Compos. B 87, 281 (2016)CrossRefGoogle Scholar
  23. 23.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 474–480 (2016)CrossRefGoogle Scholar
  24. 24.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Electron. Mater. 45, 3612 (2016)CrossRefGoogle Scholar
  25. 25.
    S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, J. Mater. Sci. Mater. Electron. 26, 6086–6091 (2015)CrossRefGoogle Scholar
  26. 26.
    N. Parveen, N. Mahato, M.O. Ansari, M.H. Cho, Ind. Eng. Chem. Res. 55, 116–124 (2016)CrossRefGoogle Scholar
  27. 27.
    X. Liu, N. Wen, N.X. Wang, Y. Zheng, ACS Sustain. Chem. Eng. 3, 475 (2015)CrossRefGoogle Scholar
  28. 28.
    Z.A. Hu, Y.L. Xie, Y.X. Wang, L.P. Mo, Y.Y. Yang, Z.Y. Zhang, Mater. Chem. Phys. 114, 990 (2009)CrossRefGoogle Scholar
  29. 29.
    K. Kawata, S.-N. Gan, D.T.-C. Ang, K.P. Sambasevam, S.-W. Phang, N. Kuramoto, Polym. Compos. 34(11), 1884–1891 (2013)CrossRefGoogle Scholar
  30. 30.
    E.A. Gizzie, J.S. Niezgoda, M.T. Robinson, A.G. Harris, G.K. Jennings, S.J. Rosenthal, D.E. Cliffel, Energy Environ. Sci. 8, 3572–3576 (2015)CrossRefGoogle Scholar
  31. 31.
    S.G. Pawar, S.L. Patil, M.A. Chougule, A.T. Mane, D.M. Jundale, V.B. Patil, Int. J. Polym. Mater. Polym. Biomater. 59, 10 (2010)CrossRefGoogle Scholar
  32. 32.
    S. Deivanayaki, V. Ponnuswamy, S. Ashokan, P. Jayamurugan, R. Mariappan, Mater. Sci. Semicond. Process. 16(2), 554–559 (2013)CrossRefGoogle Scholar
  33. 33.
    A.A. Khan, J. Islam, S.G. Ansari, H. Fouad, Z.A. Ansari, J. Mater. Sci. Mater. Electron. 26(3), 1737–1742 (2015)CrossRefGoogle Scholar
  34. 34.
    M.O. Ansari, M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho, RSC Adv. 4, 23713 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Stejskal, P. Kratochvíl, N. Radhakrishnan, Synth. Met. 61, 225–231 (1993)CrossRefGoogle Scholar
  36. 36.
    M. Zalas, M. Klein, Int. J. Photoenergy 2012, 927407 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • H. K. Seo
    • 5
  • Farheen
    • 1
  • S. A. Ansari
    • 2
  • Nazish Parveen
    • 2
  • Shabeena Qadir
    • 1
  • H. Fouad
    • 3
    • 4
  • H. S. Shin
    • 5
  • Moo Hwan Cho
    • 2
  • S. G. Ansari
    • 1
  • Z. A. Ansari
    • 1
  1. 1.Centre for Interdisciplinary Research in Basic SciencesJamia Millia IslamiaNew DelhiIndia
  2. 2.School of Chemical EngineeringYeungnam UniversityGyeongsan-siSouth Korea
  3. 3.Department of Applied Medical Science, Riyadh Community CollegeKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Biomedical Engineering Department, Faculty of EngineeringHelwan UniversityHelwanEgypt
  5. 5.School of Chemical EngineeringJeonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations