Skip to main content
Log in

Proton implantation effect on CdSe nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconducting nanowires represent an exclusive system for analyzing phenomena at the nanoscale and are also believed to play an important role in future nanoscale electronic and optoelectronic devices. The one dimensional nanostructures bring about significant alterations in their properties on implantation; depending on the energy, dose and fluence of the bombarding ions. In this view, effects of implantation with 250 keV protons on structural, optical and electrical properties of CdSe nanowires of 80 nm were studied for different fluencies. Implantation led to substantial change in the electrical conductivity at various fluencies as compared to pristine which may be attributed to the ionization effects. A drop in conductivity value above fluence of 1012 ions/cm2 may be ascribed to the passivation of some donor levels due to the presence of hydrogen. The optical band gap was also found to vary with implantation. This study opens up new avenues for research to modulate opto-electronic properties of CdSe nanowires for the novel device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Electron. Mater. 45(7), 3612 (2016)

    Article  Google Scholar 

  2. S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, J. Mater. Sci. Mater. Electron. 26(8), 6086 (2015)

    Article  Google Scholar 

  3. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27(1), 474 (2016)

    Article  Google Scholar 

  4. S. Barth, F. Hernandez-Ramirez, J.D. Holmes, A. Romano-Rodriguez, Prog. Mater. Sci. 55(6), 563 (2010)

    Article  Google Scholar 

  5. P. Rana, R.P. Chauhan, J. Mater. Sci. Mater. Electron. 25(12), 5630 (2014)

    Article  Google Scholar 

  6. R.P. Chauhan, D. Gehlawat, A. Kaur, J. Exp. Nanosci. 9(8), 871 (2014)

    Article  Google Scholar 

  7. K. Bienkowski, M. Strawski, B. Maranowski, M. Szklarczyk, Electrochim. Acta 55(28), 8908 (2010)

    Article  Google Scholar 

  8. J. Weber, R. Singhal, S. Zekri, A. Kumar, Int. Mater. Rev. 53(4), 235 (2008)

    Article  Google Scholar 

  9. Y.A. Ivanova, D.K. Ivanou, A.K. Fedotov, E.A. Streltsov, S.E. Demyanov, A.V. Petrov, D. Fink, J. Mater. Sci. 42(22), 9163 (2007)

    Article  Google Scholar 

  10. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, V.I. Vdovin, K. Ip, J.M. Zavada, J. Appl. Phys. 94(5), 2895 (2003)

    Article  Google Scholar 

  11. Y. Zhang, A. Debelle, A. Boulle, P. Kluth, F. Tuomisto, Curr. Opin. Solid State Mater. Sci. 19(1), 19 (2015)

    Article  Google Scholar 

  12. W.Q. Li, X.H. Xiao, A.L. Stepanov, Z.G. Dai, W. Wu, G.X. Cai, C.Z. Jiang, Nanoscale Res. Lett. 8(1), 1 (2013)

    Article  Google Scholar 

  13. P. Mazzoldi, G. Mattei, Phys. Status Solidi A 204(3), 621 (2007)

    Article  Google Scholar 

  14. M. Jiang, X.D. Xue, Z.Q. Chen, Y.D. Liu, H.W. Liang, H.J. Zhang, A. Kawasuso, J. Mater. Sci. 49(5), 1994 (2014)

    Article  Google Scholar 

  15. K.K. Nussupov, N.B. Beisenkhanov, I.V. Valitova, D.M. Mukhamedshina, E.A. Dmitrieva, J. Mater. Sci. Mater. Electron. 19(1), 254 (2008)

    Article  Google Scholar 

  16. V. Pazhanivelu, A.P.B. Selvadurai, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, J. Mater. Sci. Mater. Electron. 27(8), 8580 (2016)

    Article  Google Scholar 

  17. J.E. Mogonye, K. Hattar, P.G. Kotula, T.W. Scharf, S.V. Prasad, J. Mater. Sci. 50(1), 382 (2015)

    Article  Google Scholar 

  18. L.N. Large, R.W. Bicknell, J. Mater. Sci. 2(6), 589 (1967)

    Article  Google Scholar 

  19. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, S.J. Pearton, J.M. Zavada, J. Appl. Phys. 94, 3069 (2003)

    Article  Google Scholar 

  20. O. Kalantaryan, V. Zhurenko, S. Kononenko, E. Barannik, O. Kononenko, Nucl. Instrum. Methods Phys. Res. Sect. B 366, 90 (2016)

    Article  Google Scholar 

  21. Y. Ji, G. Chen, N. Tang, Q. Wang, X.G. Wang, J. Shao, W. Lu, Appl. Phys. Lett. 82(17), 2802 (2003)

    Article  Google Scholar 

  22. E.V.K. Rao, N. Duhamel, P.N. Favennec, H. Haridon, J. Appl. Phys. 49(7), 3898 (1978)

    Article  Google Scholar 

  23. B. Biglari, M. Samimi, M. Hage-Ali, J.M. Koebel, P. Siffert, J. Appl. Phys. 65(3), 1112 (1989)

    Article  Google Scholar 

  24. L.P Johnson, J.G. Matisons, ISRN Nanomaterials (2012)

  25. G. Cao, D. Liu, Adv. Colloid Interface Sci. 136(1), 45 (2008)

    Article  Google Scholar 

  26. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268(11), 1818 (2010)

    Article  Google Scholar 

  27. G.B. Harris, Philos. Mag. 43(336), 133 (1952)

    Article  Google Scholar 

  28. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall, New Jersey, 2001), pp. 167–171

    Google Scholar 

  29. J. Tauc, A. Menth, J. Non-Cryst. Solids 8, 569 (1972)

    Article  Google Scholar 

  30. R.M. Radwan, A.M. Abdul-Kader, A.E.H. Ali, Nucl. Instrum. Methods Phys. Res. Sect. B 266(16), 3588 (2008)

    Article  Google Scholar 

  31. C. Ronning, C. Borschel, S. Geburt, R. Niepelt, Mater. Sci. Eng. R 70(3), 30 (2010)

    Article  Google Scholar 

  32. J.F. Ziegler, J.P. Biersack, The Stopping and Range of Ions in Matter (Springer, US, 1985), pp. 93–129

    Google Scholar 

  33. I.P. Jain, G. Agarwal, Surf. Sci. Rep. 66(3), 77 (2011)

    Article  Google Scholar 

  34. W.D. Newhauser, R. Zhang, Phys. Med. Biol. 60(8), R155 (2015)

    Article  Google Scholar 

  35. D. Hommel, W. Busse, H.E. Gumlich, D. Suisky, J. Roseler, K. Swiatek, M. Godlewski, J. Cryst. Growth 101(1), 393 (1990)

    Article  Google Scholar 

  36. W. Walukiewicz, Phys. B 302, 123 (2001)

    Article  Google Scholar 

  37. J. Tatarkiewicz, A. Kozanecki, Z. Kalinski, K. Paprocki, Appl. Surf. Sci. 50(1), 249 (1991)

    Article  Google Scholar 

  38. P.L. Degen, Phys. Status Solidi A 16(1), 9 (1973)

    Article  Google Scholar 

  39. H.H. Woodbury, R.B. Hall, Phys. Rev. Lett. 17(21), 1093 (1966)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (Chetna Narula) is thankful to MHRD, Government of India, New Delhi, for providing financial support in terms of fellowship. The authors wish to acknowledge the Director, IUAC, New Delhi, for providing Low Energy Ion Beam Facility. Authors also acknowledge NIT Kurukshetra, India for SEM and XRD facilities and SAI Lab, Thapar University, Patiala, India for providing EDS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetna Narula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narula, C., Chauhan, R.P. Proton implantation effect on CdSe nanowires. J Mater Sci: Mater Electron 28, 3175–3184 (2017). https://doi.org/10.1007/s10854-016-5906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5906-2

Keywords

Navigation