Hydrothermal preparation and white up-conversion luminescence of NaGd(WO4)2:Yb3+/Pr3+ microcrystals



NaGd(WO4)2:Yb3+/Pr3+ microcrystals with different doping concentration of Pr3+ ions have been synthesized by a facile hydrothermal method followed by a subsequent heat treatment process. The structures, morphologies and up-conversion luminescent properties of the as-prepared NaGd(WO4)2:Yb3+/Pr3+ microcrystals were investigated by X-ray diffraction, scanning electron microscopy and photoluminescence spectra. Under the excitation with a 980 nm diode laser, intense red and blue emissions along with some weak emissions in green and yellow regions were observed. The main emission bands of the samples are assigned to 3P0 → 3H4, 1I6 + 3P1 → 3H5, 3P0 → 3H5, 1I6 + 3P1 → 3H6, 1D2 → 3H4, 3P0 → 3H6, 3P0 → 3F2, 1D2 → 3H5, 3P0 → 3F3, and 3P0 → 3F4 transitions of Pr3+ ions. Concentration quenching appears as the Pr3+ ions doping content up to 0.3 mol%. The International Commission on Illumination (CIE) chromaticity coordinates are close to those of the standard illuminant F3 (0.409, 0.394) which reprents white fluoresence. The as-prepared microcrystals might find potential applications in fields such as phosphor powders, infrared detection and display devices.


NaYF4 Excited State Absorption Upconversion Luminescence Scheelite Structure Standard Illuminant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the grant of Specially-Appointed Professor of Jiangsu and the National Science Foundation of China under Grant Nos. 11474167, 51472123 and 51502142. It is also sponsored by National Training Program for Undergraduate on Innovation of Jiangsu Province (201310300059Y).


  1. 1.
    A. Patra, S. Szha, M. Alencar, M. Rakov, G. Naciel, Chem. Phys. Lett. 407, 477–481 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Heer, M. Wermuth, K. Kamaer, D. Ehrentraut, H. Gudel, J. Lumin. 94, 337–341 (2001)CrossRefGoogle Scholar
  3. 3.
    F.X. Xin, S.L. Zhao, L.H. Huang, D.G. Deng, G.H. Jia, H.P. Wang, S.Q. Xu, Mater. Lett. 78, 75–77 (2012)CrossRefGoogle Scholar
  4. 4.
    X.C. Yu, M.L. Gao, J.X. Li, D. Li, N. Cao, Z.G. Jiang, A.B. Hao, P. Zhao, J.B. Fan, J. Lumin. 154, 111–115 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Yang, H. Feng, X.G. Zhang, J. Mater. Sci. Mater. Electron. 26(1), 229–233 (2015)CrossRefGoogle Scholar
  6. 6.
    Y.F. Wang, W. Xu, S.B. Cui, S. Xu, Z. Yin, H.W. Song, P.W. Zhou, X.Y. Liu, L. Xu, H.J. Cui, Nanoscale 7(4), 1363–1373 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Mishra, Y. Dwivedi, A. Rai, S.B. Rai, Appl. Phys. B Lasers Opt. 109(4), 663–669 (2012)CrossRefGoogle Scholar
  8. 8.
    C.B. Zheng, Y.Q. Xia, F. Qin, Y. Yua, J.P. Miao, Z.G. Zhang, W.W. Cao, Chem. Phys. Lett. 496, 316–320 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Pandey, V.K. Rai, Mater. Res. Bull. 57, 156–161 (2014)CrossRefGoogle Scholar
  10. 10.
    W. Gao, H.R. Zheng, D.L. Gao, E.J. He, J. Li, J. Nanosci. Nanotechnol. 14(6), 4308–4312 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Laihinen, M. Lastusaari, L. Pihlgren, L.C.V. Rodrigues, Opt. Mater. 36(10), 1627–1630 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.Y. Tsai, Y.S. Chang, Mater. Res. Bull. 48(7), 2609–2613 (2013)CrossRefGoogle Scholar
  13. 13.
    P.A. Santa-Cruz, F.S. Teles, Spectra Lux software v. 1.0, Ponto Quântico Nanodispositivos/RENAMI (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qiansheng Zhu
    • 1
  • Juhong Miao
    • 1
  • Yan Wen
    • 1
  • Weifeng Rao
    • 1
  1. 1.Department of Materials PhysicsNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations