Advertisement

Solid state thermal decomposition synthesis of CuO nanoparticles from coordinated pyrazolopyridine as novel precursors

  • Yasser K. Abdel-Monem
  • Sanaa M. Emam
  • Hager M. Y. Okda
Article

Abstract

The complexes derived from reaction of copper(II) salts (Cl, Br, CH3COO and SO 4 −2 ) 2-(3-Amino-4,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-1-yl)acetohydrazide were prepared and characterized. Different standardized instruments were used for obtaining the required data (spectral method UV–Vis., IR, 1H-NMR, mass spectra) magnetic susceptibility and thermogravimetric analysis TGA were performed. The electronic spectral data and magnetic moment values proved that all the copper complexes have octahedral geometry. CuO nanoparticles with 15.5 nm of particle size have been synthesized via solid state thermal decomposition using these copper (II) complexes as new precursors. Surface morphology of the synthesized CuO nanoaprticles were investigated by Ultraviolet visible light spectroscopy (UV–Vis), X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The photocatalytic activity of CuO nanoparticles was assessed toward photocatalytic degradation of MB dye and the results exhibited 97 % efficiency with degradation rate of 0.018 min−1.

Keywords

Electron Spin Resonance Photocatalytic Activity Electronic Spin Resonance Spectrum Metal Oxide Nanoparticles Acetohydrazide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y.K. Abdelmonem, F.A. EL-Essawy, S.A. Abou El-Enein, M.M. El-Sheikh-Amer, Int. J. Org. Chem 3, 198–205 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Jianhong, L. Weimin, M. Jingjin, X. Haitao, W. Jiasheng, T. Xianglin, F. Zhiyuan, W. Pengfei, J. Org. Chem. 77, 3475–3482 (2012)CrossRefGoogle Scholar
  3. 3.
    O.O. James, K.O. Ajanaku, K.O. Ogunniram, O.O. Ajani, T.O. Siyanbola, M.O. John, Trends Appl. Sci. Res. 6, 910–917 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Salavati-Niasari, D. Ghanbari, F. Davar, J. Alloy. Compd. 488, 442–447 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Salavati-Niasari, N. Mir, F. Davar, J. Alloy. Compd. 493, 163–168 (2010)CrossRefGoogle Scholar
  6. 6.
    F. Davar, M. Salavati-Niasari, Z. Fereshteh, J. Alloy. Compd. 496, 638–643 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Salavati-Niasari, F. Davar, A. Khansari, J. Alloy. Compd. 509, 61–65 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Salavati-Niasari, A. Sobhani, F. Davar, J. Alloy. Compd. 507, 77–83 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Tadjarodi, M. Imani, H. Kerdari, J. Nanostruct. 2, 127–138 (2012)Google Scholar
  10. 10.
    R. Karimian, M. Zandi, N. Shakour, F. Piri, J. Nanostruct. 1, 39–43 (2012)Google Scholar
  11. 11.
    R. Jalajerdi, F. Gholamian, H. Shafie, A. Moraveji, D. Ghanbari, J. Nanostruct. 2, 105–109 (2012)Google Scholar
  12. 12.
    A. Kodge, S. Kalyane, A. Lagashetty, Int. J. Nano Dimens. 3, 53–57 (2012)Google Scholar
  13. 13.
    H. Bakhtiari, Q.S. Manuchehri Naeini, S. Haghighi, E. Emamzadeh, Int. J. Nano Dimens. 3, 185–190 (2013)Google Scholar
  14. 14.
    S. Imani, A.M. Zandi, M. Saadati, H. Honnari, B. Maddah, Int. J. Nano Dimens. 2, 129–135 (2011)Google Scholar
  15. 15.
    M. Ghane, B. Sadeghi, A.R. Jafari, A.R. Paknejhad, Int. J. Nano Dimens. 1, 33–40 (2010)Google Scholar
  16. 16.
    S. Jadhav, S. Gaikwad, M. Nimse, A. Rajbhoj, J. Clust. Sci. 22, 121–129 (2011)CrossRefGoogle Scholar
  17. 17.
    W. Jia, E. Reitz, P. Shimpi, E.C. Rodriguez, R.-X. Gao, Y. Lei, Mat. Res. Bull. 44, 1681–1686 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Wang, O.K. Varghese, C. Ruan, M. Paulose, C.A. Grimes, J. Mater. Res. 18, 2756–2759 (2003)CrossRefGoogle Scholar
  19. 19.
    X. Jiang, T. Herricks, Y. Xia, Nano Lett. 2, 1333–1338 (2002)CrossRefGoogle Scholar
  20. 20.
    A. El-Trass, H. Elshamy, I. El-Mehasseb, M. ElKemary, Appl. Surf. Sci. 258, 2997–3001 (2012)CrossRefGoogle Scholar
  21. 21.
    A.K. Srivastava, P. Tiwari, A. Kumar, R.V. Nandedkar, Curr. Sci. 86, 22–23 (2004)Google Scholar
  22. 22.
    J. Safei-Ghomi, M.A. Ghasemzadeh, J. Nanostruct. 1, 243–248 (2012)Google Scholar
  23. 23.
    R.S. Razavi, M.R. Loghman-Estarki, J. Clust. Sci. 23, 1097–1106 (2012)CrossRefGoogle Scholar
  24. 24.
    H.-Q. Wu, X.-W. Wei, M.-W. Shao, J.-S. Gu, M.-Z. Qu, Chem. Phys. Lett. 364, 152–156 (2002)CrossRefGoogle Scholar
  25. 25.
    N.V. Suramwar, S.R. Thakare, N.T. Khaty, Int. J. Nano Dimens. 3, 75–80 (2012)Google Scholar
  26. 26.
    S. Sabbaghi, H. Orojlou, M.R. Parvizi, S. Saboori, M. Sahooli, Int. J. Nano Dimens. 3, 69–73 (2012)Google Scholar
  27. 27.
    A.D. Khalaji, J. Clust. Sci. 24, 209–215 (2013)CrossRefGoogle Scholar
  28. 28.
    A.D. Khalaji, J. Clust. Sci. 24, 189–195 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Khansari, M. Enhessari, M. Salavati-Niasari, J. Clust. Sci. 24, 289–297 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Bassett, R.C. Denney, G.H. Jeffery, J. Mendham, Vogel’s Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th edn. (Longman Group, London, 1978)Google Scholar
  31. 31.
    J. Lewis, R.G. Wilkins, Modern Coordination Chemistry (Interscience, New York, 1960), p. 403Google Scholar
  32. 32.
    C. Anitha, C.D. Sheela, P. Tharmaraj, S. Sumathi, Spectrochim. Acta A 96, 493–500 (2012)CrossRefGoogle Scholar
  33. 33.
    A.M. Khedr, F.A. Saad, Turk. J. Chem. 39, 267–280 (2015)CrossRefGoogle Scholar
  34. 34.
    H. Hosseini-Monfared, R. Bikas, J. Sanchiz, T. Lis, M. Siczek, J. Tucek, R. Zboril, P. Mayer, Polyhedron 61, 45–55 (2013)CrossRefGoogle Scholar
  35. 35.
    M.M. Abd-Elzaher, M.M.E. Shakdofa, H.A. Mousa, S.A. Moustafa, Sop Trans. Appl. Chem. 1, 42–52 (2014)CrossRefGoogle Scholar
  36. 36.
    S.M. Emam, S.A. AbouEl-Enein, F.A. El-Saied, S.Y. Alshater, Spectrochim. Acta A 92, 96–104 (2012)CrossRefGoogle Scholar
  37. 37.
    U.O. Ozdemir, E. Aktan, F. Ilbiz, A.B. Gunduzalp, N. Ozbek, M. Sari, O. Celik, S. Saydam, Inorg. Chim. Acta 423, 194–203 (2014)CrossRefGoogle Scholar
  38. 38.
    M.S. Masoud, A.A. Ibrahim, E.A. Khalil, A. El-Marghany, Spectrochim. Acta A 67, 662–668 (2007)CrossRefGoogle Scholar
  39. 39.
    B. Singh, K.K. Narang, R. Srivastava, Synth. React. Inorg. Met Org. Chem. 31, 1375–1386 (2014)CrossRefGoogle Scholar
  40. 40.
    S.A. AbouEl-Enein, S.M. Emam, M.W. Polis, E.M. Emara, J. Mol. Struct. 1099, 567–578 (2015)CrossRefGoogle Scholar
  41. 41.
    U. Ashiq, R. Ara, M.M. Tahir, Z.T. Maqsooda, K.M. Khan, S.N. Khan, H. Siddiqui, M.I. Choudhary, Chem. Biodivers. 5, 82–92 (2008)CrossRefGoogle Scholar
  42. 42.
    U. Ashiq, R.A. Jamal, M. Ma.Tahir, Z.T. Maqsood, K.M. Khan, I. Omer, M.I. Choudhary, J. Enzyme Inhib. Med. Chem 24, 1336–1343 (2009)CrossRefGoogle Scholar
  43. 43.
    A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, A.M. El-Desoky, ShM Morgan, Spectrochim. Acta A 135, 774–791 (2015)CrossRefGoogle Scholar
  44. 44.
    T.H. Rakha, O.A. El-Gammal, H.M. Metwally, G.M. Abu El-Reash, J. Mol. Struct. 2014, 96–109 (1062)Google Scholar
  45. 45.
    H. Zafar, A. Ahmed, A.U. Khan, T.A. Khan, J. Mol. Struct. 1097, 129–135 (2015)CrossRefGoogle Scholar
  46. 46.
    T. Ismail, M. Qureshi, N. Ahktar, Q. Mansoor, M. Ismail, Trop. J. Res. 15, 599–603 (2016)CrossRefGoogle Scholar
  47. 47.
    K. Rajasekar, S. Balasubramaniyan, D. Prasanth, T. Gomadurai, A. Manokaran, J. Chem. Biol. Phy. Sci. 6, 525–529 (2016)Google Scholar
  48. 48.
    A.T. Abdelkarim, Int. J. Pharm. Sci. 5, 839–851 (2015)Google Scholar
  49. 49.
    S.M. Emam, I.E. El Sayed, N. Nassar, Spectrochim. Acta A 138, 942–953 (2015)CrossRefGoogle Scholar
  50. 50.
    P. Tyagi, S. Chandra, B.S. Saraswat, D. Yadav, Spectrochim. Acta 145, 155–164 (2015)CrossRefGoogle Scholar
  51. 51.
    M.S. Masoud, S.A. AbouEl-Enein, M.E. Ayad, A.S. Goher, Spectrochim. Acta A 60, 77–87 (2004)CrossRefGoogle Scholar
  52. 52.
    F.A. El-Saied, S.A. AbouEl-Enein, S.M. Emam, H.A. El-Shater, Pol. J. Chem. 83, 1871–1883 (2009)Google Scholar
  53. 53.
    H.A. El-Boraey, S.M. Emam, D.A. Tolan, A.M. El-Nahas, Spectrochim. Acta A 78, 360–370 (2011)CrossRefGoogle Scholar
  54. 54.
    A.S. El-Tabl, F.A. El-Saied, A.N. Al-Hakim, J. Coord. Chem. 61, 2380–2401 (2008)CrossRefGoogle Scholar
  55. 55.
    A.M.A. Alaghaz, M.E. Zayed, S.A. Alharbi, R.A.A. Ammar, J. Mol. Struct. 1087, 60–67 (2015)CrossRefGoogle Scholar
  56. 56.
    B.J. Hathaway, G. Wilkinson, R.D. Gillary, J.A. McClenerty (eds.), Comprehensive Coordination Chemistry II, 5 (Pergamom, Oxford, 1987)Google Scholar
  57. 57.
    A.S. El-Tabl, F.A. El-Saied, A.N. Al-Hakim, Trans. Met. Chem. 32, 689–701 (2007)CrossRefGoogle Scholar
  58. 58.
    C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, Y. Dai, Appl. Surf. Sci. 257, 8732 (2011)CrossRefGoogle Scholar
  59. 59.
    C. Yoo, T. Kim, J. Ceram. Process. Res 12, 606 (2011)Google Scholar
  60. 60.
    N. Perkas, P. Gunawan, G. Amirian, Z. Wang, Z. Zhong, A. Gedanken, Phys. Chem. Chem. Phys. 16, 7521 (2014)CrossRefGoogle Scholar
  61. 61.
    Q. Yan, X. Li, Q. Zhao, G. Chen, J. Hazard. Mater. 209, 385–391 (2012)CrossRefGoogle Scholar
  62. 62.
    X. Shu, J. He, D. Chen, J. Phys. Chem. C 112, 4151 (2008)CrossRefGoogle Scholar
  63. 63.
    D. Liu, S. Chen, X. Fei, C. Huang, Y. Zhang, Ind. & Eng. Chem. Res. 54, 3556 (2015)CrossRefGoogle Scholar
  64. 64.
    W. Yao, F. Li, H. Li, J. Lang, J. Mater. Chem. A 3, 4578 (2015)CrossRefGoogle Scholar
  65. 65.
    M. Dara, Q. Ahsanulhaqb, Y. Kimc, J. Sohnd, W. Kima, H. Shinc, App. Sur. Sci. 255, 6279 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yasser K. Abdel-Monem
    • 1
  • Sanaa M. Emam
    • 1
  • Hager M. Y. Okda
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceMenoufia UniversityShibin El KomEgypt

Personalised recommendations