Spectroscopic investigations of Sm3+ doped Ca0.5La(MoO4)2 phosphor for solid state lighting applications

  • V. Mahalingam
  • M. Syed Gulam Ambia
  • J. Thirumalai
  • R. Krishnan
  • R. Chandramohan


The Sm3+- doped Ca0.5La(MoO4)2 were successfully synthesized by the solid state reaction method. Indexed powder X-Ray diffraction pattern suggests the scheelite tetragonal crystal structure. Surface Morphology of the sample shows polyhedral morphology and the average particle size estimated from SEM image is 5.5 µm. The energy dispersive X-ray analysis confirms the existence of Ca, La, Mo, O, and Sm elements. The room temperature photoluminescence (PL) emission spectra of Sm3+- doped Ca0.5La(MoO4)2 with various concentrations upon 404 nm excitation were recorded. The PL emission spectra show three intense emission peaks at 565, 600 and 647 nm were owing to the f–f electronic transitions of 4f electrons of Sm3+ attributed to the transitions 4G5/26H5/2, 4G5/26H7/2 and 4G5/26H9/2 respectively. Among them, bright orange-red visible emission is obtained due to 4G5/26H9/2 transition. The decay time and color chromaticity co-ordinates were estimated. From the obtained results, the prepared powder phosphor Ca0.5La(MoO4)2:Sm3+ stands as a suitable candidate for the display and solid state lighting applications.


Scheelite Solid State Reaction Method Solid State Lighting Tetragonal Crystal Structure Optimal Doping Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the Science and Engineering Research Board–SERB, New Delhi for funding this work under the SERB Project SR/FTP/PS—135/2011.


  1. 1.
    A.M. Kaczmarek, R.V. Deun, Chem. Soc. Rev. 42, 8835–8848 (2013)CrossRefGoogle Scholar
  2. 2.
    S. Abtmeyer, R. Pazik, J.R. Wiglusz, M. Malecka, G.A. Seisenbaeva, V.G. Kessler, Inorg. Chem. 53, 943–951 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Shi, B. Liu, B. Liu, C. Li, Z. Wang, RSC Adv. 5, 95953–95959 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Gai, C. Li, P. Yang, J. Lin, Chem. Rev. 114, 2343–2389 (2014)CrossRefGoogle Scholar
  5. 5.
    V. Mahalingam, J. Thirumalai, R. Krishnan, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 26, 842–852 (2015)Google Scholar
  6. 6.
    H. Deng, Z. Zhao, J. Wang, Z. Hei, M. Li, H.M. Noh, J.H. Jeong, R. Yu, J. Solid State Chem. 228, 110–116 (2015)CrossRefGoogle Scholar
  7. 7.
    R. Krishnan, J. Thirumalai, I.B.S. Banu, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 24, 4774–4781 (2013)Google Scholar
  8. 8.
    V. Mahalingam, J. Thirumalai, R. Krishnan, R. Chandramohan, Electron. Mater. Lett. 12, 32–47 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, C. Lin, H. Zheng, D. Sun, L. Li, B. Chen, J. Alloys Compd. 559, 123–128 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Krishnan, J. Thirumalai, V. Mahalingam, S. Mantha, J. Mater. Sci.: Mater. Electron. 26, 8568–8580 (2015)Google Scholar
  11. 11.
    V. Mahalingam, J. Thirumalai, R. Krishnan, S. Mantha, Spectrochim. Acta A 152, 172–180 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Wang, B.K. Moon, S.H. Park, J.H. Kim, J. Shi, K.H. Kim, J.H. Jeong, RSC Adv. 5, 89290–89298 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, New York, 1994)CrossRefGoogle Scholar
  14. 14.
    R. Krishnan, J. Thirumalai, V. Mahalingam, S. Mantha, M. Lavanya, Mater. Chem. Phys. 162, 41–49 (2015)CrossRefGoogle Scholar
  15. 15.
    V. Mahalingam, J. Thirumalai, J. Mater. Sci.: Mater. Electron. 27, 8884–8890 (2016)Google Scholar
  16. 16.
    X. He, J. Zhou, N. Lian, J. Sun, M. Guan, J. Lumin. 130, 743–747 (2010)CrossRefGoogle Scholar
  17. 17.
    Y.C. Fang, S.Y. Chu, P.C. Kao, Y.M. Chuang, Z.L. Zeng, J. Electrochem. Soc. 158, J1–J5 (2011)CrossRefGoogle Scholar
  18. 18.
    G.M. Kuz’micheva, A.V. Eremin, V.B. Rybakov, K.A. Subbotin, E.V. Zharikov, Rus. J. Inorg. Chem. 55, 1448–1453 (2009)CrossRefGoogle Scholar
  19. 19.
    R.D. Shannnon, Acta Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  20. 20.
    G.S.R. Raju, E. Pavitra, Y.H. Ko, J.S. Yu, J. Mater. Chem. 22, 15562–15569 (2012)CrossRefGoogle Scholar
  21. 21.
    P.S. Dutta, A. Khanna, ECS J. State Sci. Technol 2, R3153–R3167 (2013)CrossRefGoogle Scholar
  22. 22.
    Q. Xiao, Q. Zhou, M. Li, J. Lumin. 130, 1092–1094 (2010)CrossRefGoogle Scholar
  23. 23.
    G.S.R. Raju, S. Buddhudu, Spectrochim. Acta A 70, 601–605 (2008)CrossRefGoogle Scholar
  24. 24.
    B.R. Judd, Phys. Rev. 127, 750–761 (1962)CrossRefGoogle Scholar
  25. 25.
    G.S. Ofelt, J. Chem. Phys. 37, 511–520 (1962)CrossRefGoogle Scholar
  26. 26.
    Z. Li, Y. Wang, J. Cao, Y. Jiang, X. Zhao, Z. Meng, J. Rare Earths 34, 143–147 (2016)CrossRefGoogle Scholar
  27. 27.
    G. Blasse, Philips Res. Rep. 24, 131–144 (1969)Google Scholar
  28. 28.
    A.K. Ambast, J. Goutam, S. Som, S.K. Sharma, Spectrochim. Acta A 122, 93–99 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Dutta, S. Som, S.K. Sharma, Dalton Trans. 42, 9654–9661 (2013)CrossRefGoogle Scholar
  30. 30.
    V. Mahalingam, J. Thirumalai, RSC Adv. 6, 80390–80397 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. Mahalingam
    • 1
  • M. Syed Gulam Ambia
    • 1
  • J. Thirumalai
    • 1
  • R. Krishnan
    • 2
  • R. Chandramohan
    • 3
  1. 1.Department of PhysicsB.S.Abdur Rahman UniversityVandalur, ChennaiIndia
  2. 2.Department of PhysicsRajalakshmi Institute of TechnologyChennaiIndia
  3. 3.Department of PhysicsSree Sevugan Annamalai CollegeDevakottaiIndia

Personalised recommendations