Advertisement

Improved photo-catalytic activity of novel nano-dimension Ce/Zn composite oxides deposited on flat-glass surface for removal of Acid Black 4BN dye pollution

  • Mohammad Hossein Habibi
  • Mosa Fakhrpor
Article

Abstract

In this research, we studied an easy method to prepare pure cerium oxide nano particle (CeONP), pure zinc oxide nano particle (ZnONP) and Ce/Zn nano composite (Ce/ZnONP) coupled oxide by one pot reaction of cerium and zinc nitrate as precursors in aqueous solution using a Teflon-lined stainless autoclave at 120 °C for 12 h. Model water pollutant Acid Black 4BN as a di-azo textile dye was used to compare the photo-catalytic activity of (CeONP), (ZnONP) and (CeZnONP) deposited on flat-glass surface to overcome the problem of nano catalyst separation from suspension. Thermal, structural and spectral characterization of nano-structures were studied by thermo-gravimetric analysis, X-ray diffraction method, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy. The elemental analysis using energy dispersive X-ray spectroscopy proved the existence of cerium and zinc in immobilized nano-structures Ce/Zn oxides. The X-ray diffraction result of the composite showed high crystalline cubic cerium oxide and hexagonal wurtzite zinc oxide. The photo-catalytic activity of Ce/Zn nano composite oxide coated on flat-glass surface for degradation dia-azo dye was enhanced compared to their single oxide counterparts. This heterogeneous photo-catalytic degradation of dia-azo dye can be applied as an alternative to suspended oxide powders and over-come drawbacks of filtration of photo-catalysts. This study for the first time showed the potential application of Ce/Zn nano composite for removal of organic pollutant from water.

Keywords

Cerium CeO2 Zinc Oxide Cerium Oxide Diffuse Reflectance Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank the University of Isfahan for financially supporting this work.

References

  1. 1.
    A.H. Kianfar, P. Dehghani, M.M. Momeni, J. Mater. Sci. Mater. Electron. 27, 3368 (2016)CrossRefGoogle Scholar
  2. 2.
    M.M. Momeni, M. Mirhosseini, N. Mohammadi, J. Mater. Sci. Mater. Electron. 27, 6542 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Dinari, M.M. Momeni, Y. Ghayeb, J. Mater. Sci. Mater. Electron. 27, 9861 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Bahari, M. Roeinfard, A. Ramzannezhad, J. Mater. Sci. Mater. Electron. 27, 9363 (2016)CrossRefGoogle Scholar
  5. 5.
    C.Y. Chen, M. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoce, ACS Nano 3, 3103 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Huang, Z. Yin, Q. Zheng, Energy Environ. Sci. 4, 3861 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Dhingra, S. Shrivastava, P. Senthil Kumar, S. Annapoorni, Compos. B 45, 1515 (2013)CrossRefGoogle Scholar
  8. 8.
    G.J. Exarhos, X.D. Zhou, Thin Solid Films 515, 7025 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Zhu, X. Chen, F. Zuo, M. Jiang, Z. Zhou, D. Hui, J. Solid State Chem. 197, 69 (2013)CrossRefGoogle Scholar
  10. 10.
    S.K. Esthappan, A.B. Nair, R. Joseph, Compos. B 69, 45 (2015)CrossRefGoogle Scholar
  11. 11.
    J.Y. Park, Y.S. Yun, Y.S. Hong, H. Oh, J.J. Kim, S.S. Kim, Compos. B 37, 408 (2006)CrossRefGoogle Scholar
  12. 12.
    J. Wang, W. Mi, J. Tian, J. Dai, X. Wang, X. Liu, Compos. B 45, 758 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Ataeefard, F. Mirjalili, Compos. B 51, 92 (2013)CrossRefGoogle Scholar
  14. 14.
    M.H. Habibi, Z. Rezvani, Spectrochim. Acta A 147, 173 (2015)CrossRefGoogle Scholar
  15. 15.
    M.H. Habibi, J. Parhizkar, Spectrochim. Acta A 150, 879 (2015)CrossRefGoogle Scholar
  16. 16.
    M.H. Habibi, E. Askari, Synth. React. Inorg. Met.-Org. Chem. 45, 281 (2015)CrossRefGoogle Scholar
  17. 17.
    M.H. Habibi, E. Askari, Synth. React. Inorg. Met.-Org. Chem. 45, 1457 (2015)CrossRefGoogle Scholar
  18. 18.
    M.H. Habibi, B. Karimi, Iran. J. Environ. Technol. 1, 31 (2015)Google Scholar
  19. 19.
    M.H. Habibi, B. Karimi, J. Ind. Eng. Chem. 20, 1566 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Zendehdel, M.H. Habibi, M. Hashemzadeh-Esfarjani, Sep. Sci. Technol. 49, 2951 (2014)CrossRefGoogle Scholar
  21. 21.
    M.H. Habibi, A.H. Habibi, J. Ind. Eng. Chem. 20, 2964 (2014)CrossRefGoogle Scholar
  22. 22.
    M.H. Habibi, F. Fakhri, J. Therm. Anal. Calorim. 115, 1329 (2014)CrossRefGoogle Scholar
  23. 23.
    M.H. Habibi, A.H. Habibi, M. Zendehdel, M. Habibi, Spectrochim. Acta Part A 110, 226 (2013)CrossRefGoogle Scholar
  24. 24.
    M.H. Habibi, B. Karimi, M. Zendehdel, M. Habibi, Spectrochim. Acta Part A 116, 374 (2013)CrossRefGoogle Scholar
  25. 25.
    N. Mohaghegh, M. Tasviri, E. Rahimi, M.R. Gholami, Mater. Sci. Semicond. Process. 21, 167 (2014)CrossRefGoogle Scholar
  26. 26.
    M.H. Habibi, M.H. Rahmati, Spectrochim. Acta A 137, 160 (2015)CrossRefGoogle Scholar
  27. 27.
    E.D. Sherly, J.J. Vijaya, L.J. Kennedy, J. Mol. Struct. 1099, 114 (2015)CrossRefGoogle Scholar
  28. 28.
    C. Li, R. Chen, X. Zhang, S. Shu, J. Xiong, Y. Zheng, W. Dong, Mater. Lett. 65, 1327 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Faisal, V. Khan, M.M. Rahman, A. Jamal, K. Akhtar, M.M. Abdullah, J. Mater. Sci. Technol. 27, 594 (2011)CrossRefGoogle Scholar
  30. 30.
    G.S. Pozan, M. Isleyen, S. Gokcen, Appl. Catal. B Environ. 37, 140 (2013)Google Scholar
  31. 31.
    K.Z. Lv, J. Li, X.X. Qing, W.Z. Li, Q.Y. Chen, J. Hazard. Mater. 189, 329 (2011)CrossRefGoogle Scholar
  32. 32.
    C. Zeng, S. Xie, M. Yu, Y. Yang, X. Lu, Y. Tong, J. Power Sources 247, 545 (2014)CrossRefGoogle Scholar
  33. 33.
    B.D. Cullity, Elements of X-ray Diffraction, 3rd edn. (Addison-Wesley, Reading, 1967)Google Scholar
  34. 34.
    S. Pankaj, P. Rajaram, R. Tomar, J. Colloid Interface Sci. 325, 547 (2008)CrossRefGoogle Scholar
  35. 35.
    E.K. Goharshadi, Y. Ding, M. Namayandeh Jorabchi, P. Nancarrow, Ultrason. Sonochem. 16, 120 (2009)CrossRefGoogle Scholar
  36. 36.
    P. Ji, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 112, 17809 (2008)CrossRefGoogle Scholar
  37. 37.
    N. Ahmadi, A. Nemati, M. Solati-Hashjin, Mater. Sci. Semicond. Process. 26, 41 (2014)CrossRefGoogle Scholar
  38. 38.
    L. Zhao, Q. Jiang, L. Jianshe, Appl. Surf. Sci. 254, 4620 (2008)CrossRefGoogle Scholar
  39. 39.
    C.H. Lio, X. Tang, C. Mo, Z. Qiang, J. Solid State Chem. 181, 913 (2008)CrossRefGoogle Scholar
  40. 40.
    Z. Jing Chang, G. Linling, C. Weiliang, J. Rare Earths 24, 182 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Nanotechnology Laboratory, Department of ChemistryUniversity of IsfahanIsfahanIslamic Republic of Iran

Personalised recommendations