Development of multiferroic polymer nanocomposite from PVDF and (Bi0.5Ba0.25Sr0.25)(Fe0.5Ti0.5)O3



Thin films of some polymer–ceramics multiferroic nanocomposites (in 0–3 connectivity) of compositions (1 − x)PVDF–x((Bi0.5Ba0.25Sr0.25)(Fe0.5Ti0.5)O3 (x = 0.05,0.1,0.15)) have been prepared using a standard solution casting method. The basic structure and surface morphology of the materials were studied using X-ray diffraction and scanning electron microscopy technique respectively. Structural investigation confirms the presence of polymeric electro active β-phase of matrix (PVDF) and nano filler perovskite phase of the incorporated nano-ceramics. The high resolution transmission electron micrograph of the prepared nano-ceramic thin film composite has shown distinct and uniformly distributed particles (with less agglomeration). This has been observed in SEM micrographs also. The flexible nano-composites fabricated with polymer (PVDF), bismuth ferrite (BiFeO3) and ferroelectric (BST) exhibit high dielectric constant and low tangent loss. The electric response investigated by impedance spectroscopy technique in terms of electric circuit has provided some interesting results on contributions of grain and grain boundary in the restive characteristics of the composites. The study of ac conductivity as a function of frequency obeys Jonscher’s power law. The experimentally obtained first order magnetoelectric coefficient (αME) is found to encouraging for multifunctional application. The improved conductivity and dielectric properties suggest some promising applications in the embedded capacitors.


PVDF Polymer Nanocomposite Filler Concentration Ceramic Filler Pure PVDF 



The authors gratefully acknowledge the grant received from DRDO (Grant Number: ERIP/ER/1102202/M/01/1438 dated 25/07/2012) Government of India to carry out this work. The authors also grateful to CRF, IIT Kharagpur and Dr. Ashok Kumar, Senior Scientist of NPL, New Delhi, for providing some experimental facilities.


  1. 1.
    A.J. Lovinger, Ferroelectric polymers. Science 220, 115 (1983)CrossRefGoogle Scholar
  2. 2.
    H. Kawai, The piezoelectricity of poly(vinylidene fluoride). Jpn. J. Appl. Phys. 8, 975 (1969)CrossRefGoogle Scholar
  3. 3.
    M. Kobayashi, K. Tashiro, H. Tadokoro, Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8, 158 (1975)CrossRefGoogle Scholar
  4. 4.
    A. Bello, E. Laredo, M. Grimau, Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing: application to α–PVDF. Phys. Rev. B 60, 12764 (1999)CrossRefGoogle Scholar
  5. 5.
    K. Kakimoto, K. Fukuta, H. Ogawa, Fabrication of fibrous BaTiO3-reinforced PVDF composie sheets for transducer application. Sens. Actuators, A 200, 21 (2013)CrossRefGoogle Scholar
  6. 6.
    T. Zhou, J.W. Zha, R.Y. Cui, B.H. Fan, J.K. Yuan, Z.M. Dang, Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl. Mater. Interfaces 3, 2184 (2011)CrossRefGoogle Scholar
  7. 7.
    W.M. Xia, Z. Xu, F. Wen, Z.C. Zhang, Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposite. Ceram. Int. 38, 1071 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Hammami, M. Arous, M. Lagache, A. Kallel, Study of the interfacial MWS relaxation by dielectric spectroscopy in unidirectional PZT fibres/epoxy resin composites. J. Alloys Compd. 430, 1 (2007)CrossRefGoogle Scholar
  9. 9.
    C. Behera, R.N.P. Choudhary, P.R. Das, Structural, dielectric, impedance and magneto-electric properties of mechanically synthesized(Bi0.5Ba0.25Sr0.25)(Fe0.5Ti0.5)O3 nano-electronic system. Mater. Res. Express 3, 035005 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Khelifi, M. Zannen, N. Abdelmoula, D. Mezzane, A. Maalej, H. Khemakhem, M. Es-Souni, Dielectric and magnetic properties of (1 − x)BiFeO3–xBa0.8 Sr0.2TiO3 ceramics. Ceram. Int. 38, 5993 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Liu, S. Xue, W. Zhang, J. Zhai, G. Chen, Significantly enhanced dielectric property in PVDF nano-composites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes. J. Mater. Chem. A 2, 18040 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Tawansi, A.H. Oraby, H.I. Abdelkadar, M. Abdelaziz, FeCl3–CoCl2 mixed fillers effects on the structural, electrical and magnetic properties of PVDF films. J. Magn. Magn. Mater. 262, 203 (2003)CrossRefGoogle Scholar
  13. 13.
    I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab, N.A. Hakeem, Structural, optical and dielectric behavavior of PVDF filled with different concentration of iodine PVDF-PZT nanocomposite film based self-charging power cell. Phys. B 405, 94 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Sen, S.K. Mishra, Electrical behavior of PMN-PT-PVDF nanocomposite. J. Phys. D Appl. Phys. 41, 165305 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, Y. Zhang, X. Xue, C. Cui, B. He, Y. Nie, P. Deng, Z.L. Wang, Structural, electrical and dielectric properties of (Sr1 − xCaX)MnO3(0 ≤ x≤1.0) ceramic. Nanotechnology 25, 105401 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Dash, R.N.P. Choudhary, M.N. Goswami, Modification of ferroelectric and resistive properties of (Bi0.5Na0.5)(Nb0.5Fe0.5)O3–PVDF composite. J. Polym. Res. 22, 54 (2015)CrossRefGoogle Scholar
  17. 17.
    P. Mishra, P. Kumar, Dielectric properties of 0.25(BZT–BCT) − 0.75[(1 − x)PVDF–xCCTO](x = 0.02,0.04,0.06,0.08 and 0.1) composites for embedded capacitor application. Compos. Sci. Technol. 88, 26 (2013)CrossRefGoogle Scholar
  18. 18.
    L.L. Sun, B. Li, Y. Zhao, G. Mitchell, W.H. Zhong, Structure-induced high dielectric constant and low loss of CNF/PVDF composites with heterogeneous CNF distribution. Nanotechnology 21, 305702 (2010)CrossRefGoogle Scholar
  19. 19.
    A.K. Zak, W.C. Gan, W.A. Majid, M. Darroudi, Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films. Ceram. Int. 37, 1653 (2011)CrossRefGoogle Scholar
  20. 20.
    F.C. Loh, K.L. Tan, E.T. Kang, Y. Uyama, Y. Ikada, Structural studies of polyethylene, poly(ethylene terephthalate) and polystyrene films modified by near u.v. light induced surface graft copolymerization. Polymer 36, 21 (1995)CrossRefGoogle Scholar
  21. 21.
    Y. Deng, Y. Zhang, Y. Xiang, G. Wang, X. Huibin, Bi2S3-BaTiO3/PVDF three-phase composites with high dielectric permittivity. J. Mater. Chem. 19, 2058 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Pant, D.K. Kanchan, N. Gondaliyam, Transport properties and relaxation studies in BaO substituted Ag2O–V2O5–TeO2 glass system. Mater. Chem. Phys. 115, 98 (2009)CrossRefGoogle Scholar
  23. 23.
    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812 (2003)CrossRefGoogle Scholar
  24. 24.
    S. Satpathy, P.K. Gupta, K.B.R. Verma, Enhancement of nonvolatile polarization and pyroelectric sensitivity in lithium tantalite(LT)/poly(vinyledene fluoride) (PVDF) nanocomposite. J. Phys. D Appl. Phys. 42, 055402 (2009)CrossRefGoogle Scholar
  25. 25.
    R. kaiser, G. Miskolczy, Magnetic properties of stable dispersion of subdomain magnetic particle. J. Appl. Phys. 41, 1064 (1970)CrossRefGoogle Scholar
  26. 26.
    G.D. Prasannaa, H.S. Jayannaa, A.R. Lamania, S. Dash, Polyaniline/CoFe2O4 nanocomposite: a novel synthesis, characterization and magnetic properties. Synth. Met. 161, 2306 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Zhanga, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Dielectric, magnetic and magnetoelectric properties of Ni0.5Zn0.5Fe2O4–Pb(Zr0.48Ti0.52)O3 composite ceramics. Ceram. Int. 40, 5853 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Shi, R. Zuo, Y. Xun, L. Wang, C. Gu, H. Su, J. Zhong, G Yu Preparation and multiferroic properties of 2–2 type CoFe2O4/Pb(Zr, Ti)O3 composite films with different structures. Ceram. Int. 40, 9249 (2014)CrossRefGoogle Scholar
  29. 29.
    G.V. Duonga, R. Groessinger, M. Schoenhart, D. Bueno-Basques, The lock-in technique for studying magnetoelectric effect. J. Magn. Magn. Mater. 316, 390s (2007)CrossRefGoogle Scholar
  30. 30.
    J. Miao, H. Yang, W. Hao, J. Yuan, B. Xu, X.Q. Qiu, L.X. Cao, B.R. Zhao, Temperature dependence of the ferroelectric and dielectric properties of the B0.5Sr0.5 TiO3/La0.67 Sr0.33 MnO3 Heterostructure. J. Phys. D Appl. Phys. 38, 5 (2005)CrossRefGoogle Scholar
  31. 31.
    S. Rajendran, T. Uma, Lithium ion conduction in PVC-LiBF4 electrolytes gelled with PMMA. J. Power Sources 88, 282 (2000)CrossRefGoogle Scholar
  32. 32.
    D. Saikia, Y.W. Chen-Yang, Y.T. Chen, Y.K. Li, S.I. Lin, Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234, 24 (2008)CrossRefGoogle Scholar
  33. 33.
    K. Tsunemi, H. Ohno, E.A. Tsuchida, Mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films. Electrochim. Acta 28, 833 (1983)CrossRefGoogle Scholar
  34. 34.
    S. Ramesh, O.P. Ling, Effect of ethylene carbonate on the ionic conduction in poly(vinylidenefluoride-hexafluoropropylene) based solid polymer electrolytes. Polym. Chem. 1, 702 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Multifunctional and Advanced Materials Research Laboratory, Department of Physics, Institute of Technical Education and ResearchSOA UniversityBhubaneswarIndia
  2. 2.Department of PhysicsNIT AgartalaTripuraIndia
  3. 3.Department of PhysicsV S S University of TechnologyBurla, SambalpurIndia

Personalised recommendations