Novel synthesis and characterization of cobalt titanate nanoparticles: investigation of capping agents effect and its photocatalyst application



This work has provided a general, simple, and effective method to control the composition and morphology of CoTiO3 nanoparticles, which revealed potential new insight into inorganic synthesis methodology. CoTiO3 nanoparticles were synthesized via a novel route based on the reaction between cobalt salt and tetra-n-butyl titanate (TNBT) in ethanol. Results of this investigation demonstrate that CoTiO3 with very uniform sphere-like shape, small grain size and pure rhombohedral phase could be synthesized by different capping agents such as asparagine, alanine, and leucine. XRD, SEM, EDS, and UV–vis spectroscopy were employed to characterize structural, morphological, and optical properties of CoTiO3 nanoparticles. According to the vibrating sample magnetometer (VSM) result, CoTiO3 nanoparticles indicated a paramagnetic behavior at room temperature. Furthermore, the photocatalytic properties of as synthesized CoTiO3 were evaluated by degradation of methyl orange (MO) as water contaminant.


CoTiO3 Nanoparticles Novel route Capping agents Photocatalyst 



Authors are grateful to council of University of South Tehran for providing financial support to undertake this work.


  1. 1.
    R. Talebi, S. Khademolhoseini, S. Rahnamaeiyan, J. Mater. Sci.: Mater. Electron. 27, 1427 (2016)Google Scholar
  2. 2.
    S. Khademolhoseini, R. Talebi, J. Mater. Sci.: Mater. Electron. 27, 2938 (2016)Google Scholar
  3. 3.
    S. Khademolhoseini, M. Zakeri, S. Rahnamaeiyan, M. Nasiri, R. Talebi, J. Mater. Sci.: Mater. Electron. 26, 7303 (2015)Google Scholar
  4. 4.
    M. Behpour, S.M. Ghoreishi, M. Salavati-Niasari, N. Mohammadi, J. Nanostruct. 2, 317 (2012)Google Scholar
  5. 5.
    L. Nejati-Moghadam, A. Esmaeili Bafghi-Karimabad, M. Salavati-Niasari, H. Safardoust, J. Nanostruct. 5, 47 (2015)Google Scholar
  6. 6.
    J. Safaei-Ghomi, S. Zahedi, M. Javid, M.A. Ghasemzadeh, J. Nanostruct. 5, 153 (2015)CrossRefGoogle Scholar
  7. 7.
    F. Beshkar, M. Salavati-Niasari, J. Nanostruct. 5, 17 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Behpour, S. Masoum, M. Meshki, J. Nanostruct. 3, 243 (2013)Google Scholar
  9. 9.
    M. Rahimi-Nasarabadi, J. Nanostruct. 4, 211 (2014)Google Scholar
  10. 10.
    S. Moshtaghi, D. Ghanbari, M. Salavati-Niasari, J. Nanostruct. 5, 169 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Behpour, M. Chakeri, J. Nanostruct. 2, 227 (2012)Google Scholar
  12. 12.
    J. Safari, Z. Zarnegar, J. Nanostruct. 3, 191 (2013)Google Scholar
  13. 13.
    Y.K. Sharma, M. Kharkwal, S. Uma, R. Nagarajan, Polyhedron 28, 579 (2009)CrossRefGoogle Scholar
  14. 14.
    E.S. Kim, C.J. Jeon, J. Eur. Ceram. Soc. 30, 341 (2010)CrossRefGoogle Scholar
  15. 15.
    N. Dharamraj, H.C. Park, C.K. Kim, H.Y. Kim, D.R. Lee, Mater. Chem. Phys. 87, 5 (2004)CrossRefGoogle Scholar
  16. 16.
    D.S. Ginley, M.A. Butter, J. Appl. Phys. 48, 21 (1997)Google Scholar
  17. 17.
    T. Fujii, M. Kayano, Y. Takada, M. Nakanishi, J. Takada, Solid State Ionics 172, 2 (2004)Google Scholar
  18. 18.
    M. Siemons, U. Simon, Sens. Actuators B 120, 8 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Siemons, U. Simon, Sens. Actuators B 126, 3 (2007)Google Scholar
  20. 20.
    Y. Lin, Y. Chang, W. Yang, B. Tsai, J. Non-Cryst. Solids 352, 4 (2006)Google Scholar
  21. 21.
    G.W. Zhou, Y.S. Kang, Mater. Sci. Eng C 24, 4 (2004)CrossRefGoogle Scholar
  22. 22.
    Z.Q. Song, S.B. Wang, W. Yang, M. Li, H. Wang, H. Yan, Mater. Sci. Eng B 113, 4 (2004)CrossRefGoogle Scholar
  23. 23.
    H. He, J. Huang, L. Cao, J. Wu, Sens. Actuators B 132, 5 (2008)CrossRefGoogle Scholar
  24. 24.
    J. Mona, S. Kale, A.B. Gaikwad, A.V. Murugan, V. Ravi, Mater. Lett. 60, 7 (2006)CrossRefGoogle Scholar
  25. 25.
    F. Pacheco, M. Gonzalez, A. Medina, S. Velumani, J.A. Ascencio, Appl. Phys. A 78, 6 (2004)CrossRefGoogle Scholar
  26. 26.
    V. Murugan, V. Samuel, S.C. Navale, V. Ravi, Mater. Lett. 60, 2 (2006)CrossRefGoogle Scholar
  27. 27.
    X. Zhang, H. Wang, A. Huang, H. Xu, Y. Zhang, D. Yu et al., J. Mater. Sci. 38, 6 (2003)Google Scholar
  28. 28.
    X. Chu, X. Liu, G. Wang, G. Meng, Mater. Res. Bull. 34, 5 (1999)Google Scholar
  29. 29.
    Z. Guo-Wei, D.K. Lee, Y.H. Kim, C.W. Kim, Y.S. Kang, Bull. Korean Chem. Soc. 27, 2 (2006)Google Scholar
  30. 30.
    M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron 26, 7745 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, J. Nanostruct. 4, 459 (2014)Google Scholar
  32. 32.
    A. Sobhani-Nasab, M. Sadeghi, J. Mater. Sci.: Mater. Electron. 27, 7933 (2016)Google Scholar
  33. 33.
    M. Behpour, M. Mehrzad, S.M. Hosseinpour-Mashkani, J. Nanostruct. 5, 183 (2015)Google Scholar
  34. 34.
    A. Sobhani-Nasab, M. Behpour, J. Mater. Sci.: Mater. Electron. 27, 1191 (2016)Google Scholar
  35. 35.
    S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater Sci: Mater Electron 27, 4351 (2016)Google Scholar
  36. 36.
    M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron 26, 7745 (2015)CrossRefGoogle Scholar
  37. 37.
    M.P. Mazhari, A. Abbasi, A. Derakhshan, M. Ahmadi J. Nanostruct. 1, 99 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, South Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations