Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 12527–12532 | Cite as

Study of electrical properties of hafnium oxide thin film based metal–insulator–metal capacitors: pre and post metallic annealing

  • O. Mangla
  • V. Gupta


Metal–insulator–metal (MIM) capacitors having hafnium oxide (HfO2) high-κ dielectric thin film were fabricated and subsequently studied for their electrical and micro-structural properties. The MIM capacitors were found to possess low leakage current density of about 2.7 × 10−9 A/cm2 at −1 V, high capacitance density of about 18.1 fF/μm2 at 0 V, 1 MHz and improved quadratic voltage coefficient of capacitance (VCC) of about 120 ppm/V2 at 1 MHz. The electrical properties of MIM capacitors are found to be governed by Frenkel–Poole mechanism at low and intermediate fields (<1500 kV/cm) and by Schottky emission at high fields (>1500 kV/cm). The dielectric thin films have amorphous structure which has been correlated with the electrical properties of MIM capacitors. The HfO2 thin film possess good micro-structural properties in term of low roughness, which is in agreement with the obtained electrical properties of thin film based MIM capacitors. Further, post metallic annealing of MIM capacitors results in decrease in leakage current density to ~5.1 × 10−10 A/cm2 at −1 V, increase in capacitance density to ~23.1 fF/μm2 at 0 V, 1 MHz and improvement in quadratic VCC to reach a value of ~95 ppm/V2 at 1 MHz. The electrical characteristics of as-fabricated and annealed MIM capacitors are in accordance with the International Technology Roadmap for Semiconductor 2013 guidelines. The obtained electrical properties suggest the possible use of MIM capacitors in analog/mixed-signal applications.


HfO2 Leakage Current Density Schottky Emission Capacitance Density Hafnium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.A. Babcock, S.G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, B. El-Kareh, IEEE Electron Dev. Lett. 22, 230 (2001)CrossRefGoogle Scholar
  2. 2.
    S.V. Huylenbroeck, S. Decoutere, R. Venegas, S. Jenei, G. Winderickx, IEEE Electron Dev. Lett. 23, 191 (2002)CrossRefGoogle Scholar
  3. 3.
    C.H. Ng, C.-S. Ho, S.-F.S. Chu, S.-C. Sun, IEEE Trans. Electron Dev. 52, 1399 (2005)CrossRefGoogle Scholar
  4. 4.
    C.H. Ng, S.F. Chu, IEEE Electron Dev. Lett. 23, 529 (2002)CrossRefGoogle Scholar
  5. 5.
    T. Remmel, R. Ramprasad, J. Walls, in Proceedings of the International. Reliability Physics Symposium (2003), pp. 277–281Google Scholar
  6. 6.
    C.H. Cheng, S.H. Lin, K.Y. Jhou, W.J. Chen, C.P. Chou, F.S. Yeh, J. Hu, M. Hwang, T. Arikado, S.P. McAlister, A. Chin, IEEE Electron Dev. Lett. 29, 845 (2008)CrossRefGoogle Scholar
  7. 7.
    S.-H. Wu, C.-K. Deng, T.-H. Hou, B.-S. Chiou, Jpn. J. Appl. Phys. 49, 04DB16 (2010)Google Scholar
  8. 8.
    S.J. Kim, B.J. Cho, M.F. Li, X. Yu, C. Zhu, A. Chin, D.-L. Kwong, IEEE Electron Dev. Lett. 24, 387 (2003)CrossRefGoogle Scholar
  9. 9.
    L. Zhang, W. He, D.S.H. Chan, B.J. Cho, IEEE Electron Dev. Lett. 31, 17 (2010)CrossRefGoogle Scholar
  10. 10.
    H. Hu, C. Zhu, Y.F. Lu, M.F. Li, B.J. Cho, W.K. Choi, IEEE Electron Dev. Lett. 23, 514 (2002)CrossRefGoogle Scholar
  11. 11.
    X. Yu, C. Zhu, H. Hu, A. Chin, M.F. Li, B.J. Cho, D.-L. Kwong, P.D. Foo, M.B. Yu, IEEE Electron Dev. Lett. 24, 63 (2003)CrossRefGoogle Scholar
  12. 12.
    T.-H. Perng, C.-H. Chien, C.-W. Chen, P. Lehnen, C.-Y. Chang, Thin Solid Films 469–470, 345 (2004)CrossRefGoogle Scholar
  13. 13.
    C. Wenger, M. Lukosius, H.-J. Mussig, G. Ruhl, S. Pasko, C. Lohe, J. Vac. Sci. Technol. B 27, 286 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Lukosius, Ch. Walczyk, M. Fraschke, D. Wolansky, H. Richter, Ch. Wenger, Thin Solid Films 518, 4380 (2010)CrossRefGoogle Scholar
  15. 15.
    International Technology Roadmap for Semiconductors (Semiconductor Industry Association (SIA), 2013)Google Scholar
  16. 16.
    A. Srivastava, O. Mangla, R.K. Nahar, V. Gupta, C.K. Sarkar, J. Mater. Sci. Mater. Electron. 25, 3257 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Srivastava, O. Mangla, V. Gupta, IEEE Trans. Nanotechnol. 14, 612 (2015)CrossRefGoogle Scholar
  18. 18.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  19. 19.
    O. Mangla, A. Srivastava, Y. Malhotra, K. Ostrikov, J. Vac. Sci. Technol. B 32, 03D107 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Padmanabhan, N. Bhat, S. Mohan, IEEE Trans. Electron Dev. 59, 1364 (2012)CrossRefGoogle Scholar
  21. 21.
    I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instr. 78, 013705 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Greer, in Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, Chapter 9, ed. by R. Eason (Wiley, New York, 2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations