Hydrothermal synthesis, optical and magnetic properties of CeO2 nanosheets with some cracks in their wafery centre



The polygonal CeO2 nanosheets have been successfully synthesized by a facile hydrothermal technique. XRD, SEM, TEM, XPS, Raman scattering, photoluminescence (PL) spectra, and MH curve were employed to characterize the samples. The results showed that there are Ce3+ ions and oxygen vacancies in the surface of CeO2 nanosheets with a cubic fluorite structure. It is found that the polygonal nanosheets of 0.5–1.5 µm in diameters and about 50 nm in thickness display a wafery centre with some cracks. The magnetic and photoluminescence measurements indicated that the CeO2 nanosheets exhibit excellent ferromagnetism and optical properties at room temperature, which is likely attributed to the effects of the Ce3+ ions and oxygen vacancies.


CeO2 Oxygen Vacancy Fluorite Structure CeO2 Nanoparticles CeO2 Sample 



This work was supported by the National Natural Science Foundation of China (Nos. 51072002, 51272003), Coal mine machinery and electronic engineering research Center of Suzhou University (2014YKF16), Outstanding Young Talents Funded Projects of Suzhou University (Grant No. 2014XQNRL010), and the Natural Science Research Fund of Anhui Provincial Department of Education (KJ2016A775).


  1. 1.
    Y.B. Zeng, Z.Q. Li, Y.F. Liang, X.Q. Gan, M.M. Zheng, Inorg. Chem. 52, 9590 (2013)CrossRefGoogle Scholar
  2. 2.
    L.N. Wang, F.M. Meng, K.K. Li, F. Lu, Appl. Surf. Sci. 286, 269 (2013)CrossRefGoogle Scholar
  3. 3.
    B. Xu, Q.T. Zhang, S.S. Yuan, M. Zhang, T. Ohno, Chem. Eng. J. 260, 126 (2015)CrossRefGoogle Scholar
  4. 4.
    R.C. Rao, M. Yang, C.S. Li, H.Z. Dong, S. Fang, A.M. Zhang, J. Mater. Chem. A 3, 782 (2015)CrossRefGoogle Scholar
  5. 5.
    F.M. Meng, L.N. Wang, J.B. Cui, J. Alloys Compd. 556, 102 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Letichevsky, C.A. Tellez, R.R.D. Avillez, M.I.P.D. Silva, M.A. Fraga, L.G. Appel, Appl. Catal. B Environ. 58, 203 (2005)CrossRefGoogle Scholar
  7. 7.
    H.Y. Xiao, Z.H. Ai, L.Z. Zhang, J. Phys. Chem. C 113, 16625 (2009)CrossRefGoogle Scholar
  8. 8.
    C. Paun, O.V. Safonova, J. Szlachetko, P.M. Abdala, M. Nachtegaal, J. Sa, E. Kleymenov, A. Cervellino, F. Krumeich, J.A.V. Bokhoven, J. Phys. Chem. C 116, 7312 (2012)CrossRefGoogle Scholar
  9. 9.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  10. 10.
    R.R. Cui, W.C. Lu, L.M. Zhang, B.H. Yue, S.S. Shen, J. Phys. Chem. C 113, 21520 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, H. Kumagai, K. Yamamura, S. Ohara, S. Takami, A. Morikawa, H. Shinjoh, K. Kaneko, T. Adschiri, A. Suda, Nano Lett. 11, 361 (2011)CrossRefGoogle Scholar
  12. 12.
    L.H. Jiang, M.G. Yao, B. Liu, Q.J. Li, R. Liu, Z. Yao, S.C. Lu, W. Cui, X. Hua, B. Zou, T. Cui, B.B. Liu, CrystEngComm 15, 3739 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Izu, T. Itoh, M. Nishibori, I. Matsubara, W. Shin, Sens. Actuators B Chem. 171, 350 (2012)CrossRefGoogle Scholar
  14. 14.
    D.S. Zhang, X.J. Du, L.Y. Shi, R.H. Gao, Dalton Trans. 41, 14455 (2012)CrossRefGoogle Scholar
  15. 15.
    R.J. Qi, Y.J. Zhu, G.F. Cheng, Y.H. Huang, Nanotechnology 16, 2502 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Qi, K. Zhao, G.D. Li, Y. Gao, H.J. Zhao, R.B. Yu, Z.Y. Tang, Nanoscale 6, 4072 (2014)CrossRefGoogle Scholar
  17. 17.
    Z.L. Zhan, S.A. Bamett, Science 308, 844–847 (2005)CrossRefGoogle Scholar
  18. 18.
    X.Y. Yang, X. Gao, Y.L. Gan, C.Y. Gao, X.L. Zhang, K. Ting, B.M. Wu, Z.R. Gou, J. Phys. Chem. C 114, 6265 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Chen, C. Qiu, C. Chen, X. Fan, S. Xu, W. Guo, Z. Wang, Mater. Lett. 122, 90 (2014)CrossRefGoogle Scholar
  20. 20.
    X.H. Lu, D.Z. Zheng, J.Y. Gan, Z.Q. Liu, C.L. Liang, P. Liu, Y.X. Tong, J. Mater. Chem. 20, 7118 (2010)CrossRefGoogle Scholar
  21. 21.
    C.R. Li, M.Y. Cui, Q.T. Sun, W.J. Dong, Y.Y. Zheng, K. Tsukamoto, B.Y. Chena, W.H. Tang, J. Alloys Compd. 504, 498 (2010)CrossRefGoogle Scholar
  22. 22.
    N.S. Ferreira, R.S. Angélica, V.B. Marques, C.C.O. de Lima, M.S. Silva, Mater. Lett. 165, 139 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Gao, Z.Y. Zhang, J. Li, Y.Y. Ma, Y.Q. Qu, Nanoscale 7, 11686 (2015)CrossRefGoogle Scholar
  24. 24.
    F.M. Meng, J.F. Gong, Z.H. Fan, H.J. Li, J.T. Yuan, Ceram. Int. 42, 4700 (2016)CrossRefGoogle Scholar
  25. 25.
    F.L. Liang, Y. Yu, W. Zhou, X.Y. Xu, Z.H. Zhu, J. Mater. Chem. A 3, 634 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Younis, D. Chu, Y.V. Kaneti, S. Li, Nanoscale 8, 378 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Li, A. Petz, H. Yan, J.C. Nie, S. Kunsagi-Mate, J. Phys. Chem. C 115, 1480 (2011)CrossRefGoogle Scholar
  28. 28.
    H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M. Lin, J. Phys. Chem. C 116, 242 (2012)CrossRefGoogle Scholar
  29. 29.
    A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Ceram. Int. 40, 4445 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Ceram. Int. 41, 1970 (2015)CrossRefGoogle Scholar
  31. 31.
    C. Zhang, F.M. Meng, L.N. Wang, M. Zhang, Z.L. Ding, Mater. Lett. 130, 202 (2014)CrossRefGoogle Scholar
  32. 32.
    H.F. Xu, H. Li, J. Magn. Magn. Mater. 377, 272 (2015)CrossRefGoogle Scholar
  33. 33.
    T. Masui, K. Fujiwara, K.I. Machida, G.Y. Adachi, Chem. Mater. 9, 2197 (1997)CrossRefGoogle Scholar
  34. 34.
    E. Shoko, M.F. Smith, R.H. McKenzie, J. Phys, Condens. Mater. 22, 223201 (2010)CrossRefGoogle Scholar
  35. 35.
    B. Choudhury, A. Choudhury, Mater. Chem. Phys. 131, 666 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)CrossRefGoogle Scholar
  37. 37.
    G.F. Wang, Q.Y. Mu, T. Chen, Y.D. Wang, J. Alloys Compd. 493, 202 (2010)CrossRefGoogle Scholar
  38. 38.
    S.Y. Chen, Y.H. Lu, T.W. Huang, D.C. Yan, C.L. Dong, J. Phys. Chem. C 114, 19576 (2010)CrossRefGoogle Scholar
  39. 39.
    J.H. Chen, Y.J. Lin, H.C. Chang, Y.H. Chen, L. Horng, C.C. Chang, J. Alloys Compd. 548, 235 (2013)CrossRefGoogle Scholar
  40. 40.
    A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, A. Punnoose, Phys. Rev. B 76, 165206 (2007)CrossRefGoogle Scholar
  41. 41.
    A. Tiwari, V.M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, A. Gupta, Appl. Phys. Lett. 88, 142511 (2006)CrossRefGoogle Scholar
  42. 42.
    P. Slusser, D. Kumar, A. Tiwari, Appl. Phys. Lett. 96, 142506 (2010)CrossRefGoogle Scholar
  43. 43.
    M.I.B. Bernardi, A. Mesquita, F. Beron, K.R. Pirota, AOd Zevallos, A.C. Doriguetto, H.B.D. Carvalho, Phys. Chem. Chem. Phys. 17, 3072 (2015)CrossRefGoogle Scholar
  44. 44.
    S.Y. Chen, C.H. Tsai, M.Z. Huang, D.C. Yan, T.W. Huang, A. Gloter, C.L. Chen, H.J. Lin, C.T. Chen, C.L. Dong, J. Phys. Chem. C 116, 8707 (2012)CrossRefGoogle Scholar
  45. 45.
    L.N. Wang, F.M. Meng, Mater. Res. Bull. 48, 3492 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Anhui Key Laboratory of Spintronics and Nanomaterials ResearchSuzhou UniversitySuzhouPeople’s Republic of China

Personalised recommendations