Modulation of electrical properties of KNNS–BNKZ lead-free ceramics by calcination temperatures

  • Wenjuan Wu
  • Min Chen
  • Wu Bo
  • Yingchun Ding
  • Chuanqi Liu


In this work, the 0.96(K0.5Na0.5)(Nb0.96Sb0.04)O3–0.04Bi0.5(Na0.5K0.5)0.5ZrO3 (KNNS–BNKZ) ceramics were prepared by the conventional solid-state method, and effects of calcination temperatures (T cal) on their microstructure, phase structure, and electrical properties were investigated in detail. It was found that the calcination temperatures strongly affect the phase structure of the ceramics, that is, rhombohedral–orthorhombic–tetragonal phase coexistence for T cal = 500–600 °C and rhombohedral–tetragonal phase coexistence for T cal = 650–950 °C. In addition, their electrical properties are also very sensitive to the calcination temperatures. A high piezoelectricity of 450–475 pC/N can be attained in a wide calcination temperature of 750–900 °C, and especially the ceramics calcined at 850 °C exhibit optimum electrical properties: d 33 = 475 pC/N, k p = 0.51, ε r = 2561, tan δ = 0.033, P r = 15.2 μC/cm2, E C = 7.1 kV/cm, and T C = 222 °C. In addition, all the ceramics exhibit a good thermal stability of piezoelectric activity. As a result, we believe that the electrical properties of KNN-based ceramics can be well controlled by optimizing calcination condition.


Calcination Temperature Piezoelectric Property Sb2O3 Electromechanical Coupling Factor Piezoelectric Activity 



This work was supported by Project (Grant No. J201612) Supported by the Scientific Research Foundation of CUIT, the Foundation of Sichuan province science and technology support program, China (Grant No. GZ0198) and Scientific Research Project of Sichuan Provincial Department of Education (Grant No. 16ZA0216).


  1. 1.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971), p. 271Google Scholar
  2. 2.
    J.G. Wu, D.Q. Xiao, W.J. Wu, Q. Chen, J.G. Zhu, Z.C. Yang, J. Wang, J. Eur. Ceram. Soc. 32, 891 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Jpn. J. Appl. Phys. 42, 7401 (2003)CrossRefGoogle Scholar
  4. 4.
    J.G. Wu, D.Q. Xiao, W.J. Wu, Q. Chen, J.G. Zhu, Z.C. Yang, J. Wang, Scr. Mater. 65, 771 (2011)CrossRefGoogle Scholar
  5. 5.
    L.F. Zhu, B.P. Zhang, L. Zhao, J.F. Li, J. Mater. Chem. C 2, 4764 (2014)CrossRefGoogle Scholar
  6. 6.
    P. Fu, Z. Xu, R. Chu, X. Wu, W. Li, X. Li, Mater. Design 46, 322 (2013)CrossRefGoogle Scholar
  7. 7.
    X. Chao, J. Wang, P. Liang, T. Zhang, L. Wei, Z. Yang, Mater. Design 89, 465 (2016)CrossRefGoogle Scholar
  8. 8.
    J.G. Wu, D.Q. Xiao, J.G. Zhu, Chem. Rev. 115, 2559 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  10. 10.
    K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Adv. Mater. (2016). doi: 10.1002/adma.201601859 Google Scholar
  11. 11.
    K. Wang, J.F. Li, J.J. Zhou, Appl. Phys. Express. 4, 061501 (2011)CrossRefGoogle Scholar
  12. 12.
    X.P. Wang, J.G. Wu, D.Q. Xiao, J.G. Zhu, X.J. Cheng, T. Zheng, B.Y. Zhang, X.J. Lou, X.J. Wang, J. Am. Chem. Soc. 136, 2905 (2014)CrossRefGoogle Scholar
  13. 13.
    R.Z. Zuo, J. Fu, J. Am. Ceram. Soc. 94, 1467 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Tian, C.P. Hu, X.D. Meng, Z.X. Zhou, G. Shi, J. Mater. Chem. C 3, 9609 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Malic, J. Bernard, A. Bencan, M. Kosec, J. Eur. Ceram. Soc. 28, 1191 (2008)CrossRefGoogle Scholar
  16. 16.
    T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)CrossRefGoogle Scholar
  17. 17.
    W.J. Wu, M. Chen, J. Li, Y. Ding, C. Liu, J. Alloys Compd. 670, 128 (2016)CrossRefGoogle Scholar
  18. 18.
    W.J. Wu, D.Q. Xiao, J.G. Wu, W.F. Liang, J. Li, J.G. Zhu, J. Alloys Compd. 509, L284 (2011)CrossRefGoogle Scholar
  19. 19.
    F.Z. Yao, K. Wang, W. Jo, J.S. Lee, J.F. Li, J. Appl. Phys. 116, 114102 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Li, Y. Gong, L.J. Gong, H. Dong, X.F. Yi, X.J. Zheng, Mater. Design 33, 362 (2012)CrossRefGoogle Scholar
  21. 21.
    E.K. Akdoğan, K. Kerman, M. Abazari, A. Safari, Appl. Phys. Lett. 92, 112908 (2008)CrossRefGoogle Scholar
  22. 22.
    W. Wu, J. Li, D. Xiao, M. Chen, Y. Ding, C. Liu, Ceram. Int. 40, 13205 (2014)CrossRefGoogle Scholar
  23. 23.
    E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)CrossRefGoogle Scholar
  25. 25.
    W. Wu, D. Xiao, J. Wu, J. Li, J. Zhu, B. Zhang, Ceram. Int. 38, 2277 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Wu, X. Wang, X. Cheng, T. Zheng, B. Zhang, D. Xiao, J. Zhu, X. Lou, J. Appl. Phys. 115, 114104 (2014)CrossRefGoogle Scholar
  27. 27.
    J.J. Zhou, L.Q. Cheng, K. Wang, X.W. Zhang, J.F. Li, H. Liu, J.Z. Fang, Ceram. Int. 40, 2927 (2014)CrossRefGoogle Scholar
  28. 28.
    P. Palei, M. Pattanaik, P. Kumar, Ceram. Int. 38, 851 (2012)CrossRefGoogle Scholar
  29. 29.
    B. Liu, Y. Zhang, P. Li, B. Shen, J. Zhai, Ceram. Int. 42, 13824 (2016)CrossRefGoogle Scholar
  30. 30.
    D. Zhang, Z. Cheng, J. Cheng, F. Shi, X. Yang, G. Zheng, M. Cao, Ceram. Int. 42, 9073 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wenjuan Wu
    • 1
  • Min Chen
    • 1
  • Wu Bo
    • 1
  • Yingchun Ding
    • 1
  • Chuanqi Liu
    • 1
  1. 1.Sichuan Province Key Laboratory of Information Materials and Devices ApplicationChengdu University of Information TechnologyChengduPeople’s Republic of China

Personalised recommendations