Advertisement

Facile and surfactant-free hydrothermal synthesis of PbS nanoparticles: the role of hydrothermal reaction time

  • A. A. Ebnalwaled
  • Mohamed H. Essai
  • B. M. Hasaneen
  • Hossam E. Mansour
Article

Abstract

PbS nanoparticles having the suitability for power semiconductor devices, were synthesized by facile, effective, and surfactant-free hydrothermal method. The effect of reaction time on the morphology, microstructure and optical properties of PbS nanoparticles was investigated. The methods of XRD, TEM, HRTEM, EDX, FTIR and UV–VIS photometry measurements were used for PbS nanoparticles characterization. The reaction time was found to have an effective role in controlling the morphology, crystallinity, crystallite size, microstrain and optical band gap of the prepared samples.

Keywords

Crystallite Size High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Lead Sulfide Solvothermal Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Baláž, P. Pourghahramani, E. Dutková, M. Fabián, J. Kováč, A. Šatka, Cent. Eur. J. Chem. 7(2), 215–221 (2009)Google Scholar
  2. 2.
    M.S. Niasari, A. Sobhani, S. Khoshrooz, N. Mirzanasiri, J. Clust. Sci. 25, 937–947 (2014)CrossRefGoogle Scholar
  3. 3.
    D.J. Asunskis, I.L. Bolotin, L. Hanley, J. Phys. Chem. C 112, 9555–9558 (2008)CrossRefGoogle Scholar
  4. 4.
    V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370, 354–357 (1994)CrossRefGoogle Scholar
  5. 5.
    R.S. Kane, R.E. Cohen, R. Silbey, J. Phys. Chem. B 100(19), 7928–7932 (1996)CrossRefGoogle Scholar
  6. 6.
    P.K. Nair, O. Gomezdaza, M.T.S. Nair, Adv. Mater. Opt. Electron. 1, 139–145 (1992)CrossRefGoogle Scholar
  7. 7.
    P. Gadenne, Y. Yagil, G. Deutscher, J. Appl. Phys. 66, 3019–3025 (1989)CrossRefGoogle Scholar
  8. 8.
    H. Hirata, K. Higashiyama, Bull. Chem. Soc. Jpn 44, 2420 (1971)CrossRefGoogle Scholar
  9. 9.
    M. Nam, J. Park, S.-W. Kim, K. Lee, J. Mater. Chem. A 2, 3978–3985 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Emadi, M.S. Niasari, Superlattices Microstruct. 54, 118–127 (2013)CrossRefGoogle Scholar
  11. 11.
    M.N. Nadagouda, R.S. Varma, Cryst. Growth Des. 8(1), 291–295 (2008)CrossRefGoogle Scholar
  12. 12.
    F. Li, Q. Qin, J. Wu, Z. Li, J. Mater. Sci. 45, 348–353 (2010)CrossRefGoogle Scholar
  13. 13.
    V.F. Skums, R.L. Pink, M.R. Allazov, Inorg. Mater. 27, 1336 (1991). (English Translation) Google Scholar
  14. 14.
    F. Davar, M. Mohammadikish, M.R. Estarki, M.M. Farahani, Ceram. Int. 40, 8143–8148 (2014)CrossRefGoogle Scholar
  15. 15.
    S.K. Yadav, P. Jeevanandam, Opt. Mater. 46, 209–215 (2015)CrossRefGoogle Scholar
  16. 16.
    S.M. Lee, S.N. Cho, J. Cheon, Adv. Mater. 15(5), 441–444 (2003)CrossRefGoogle Scholar
  17. 17.
    P. Scherrer, Göttinger Nachrichten Gesell, vol. 2 (1918), p. 98Google Scholar
  18. 18.
    J. Markmann, V. Yamakov, J. Weissemüller, Scr. Mater. 59(1), 15–18 (2008)CrossRefGoogle Scholar
  19. 19.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  20. 20.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall Inc., New Jersey, 1971)Google Scholar
  21. 21.
    I.J. Kramer, E.H. Sargent, Chem. Rev. 114, 863–882 (2014)CrossRefGoogle Scholar
  22. 22.
    I. Kang, F.W. Wise, J. Opt. Soc. Am. B 14(7), 1632 (1997)CrossRefGoogle Scholar
  23. 23.
    R. Thielsch, T. Biihme, R. Reiche, D. Schlafer, H.-D. Baues, H. Bottcher, Nanostruct. Mater. 10(2), 131–149 (1998)CrossRefGoogle Scholar
  24. 24.
    I. Chakraborty, S.P. Moulik, J. Nanopart. Res. 6, 233–240 (2004)CrossRefGoogle Scholar
  25. 25.
    J. Liu, H. Yu, Z. Wu, W. Wang, J. Peng, Y. Cao, Nanotechnology 19, 345602 (2008)CrossRefGoogle Scholar
  26. 26.
    A.H. Souici, N. Keghouche, J.A. Delaire, H. Remita, A. Etcheberry, M. Mostafavi, J. Phys. Chem. C 113, 8050–8057 (2009)CrossRefGoogle Scholar
  27. 27.
    A.K. Bhunia, T. Kamilya, S. Saha, J. Phys. Sci. 20, 221–224 (2015)Google Scholar
  28. 28.
    R.S.S. Saravanan, M. Meena, D. Pukazhselvan, C.K. Mahadevan, J. Alloys Compd. 627, 69–77 (2015)CrossRefGoogle Scholar
  29. 29.
    F. Göde, E. Güneri, F.M. Emen, V.E. Kafadar, S. Ünlü, J. Lumin. 147, 41–48 (2014)CrossRefGoogle Scholar
  30. 30.
    B. Yu, Y. Gu, Y. Mao, C. Zhu, F. Gan, J. Nonlinear Opt. Phys. Mater. 9(1), 117 (2000)CrossRefGoogle Scholar
  31. 31.
    L.E. Brus, J. Chem. Phys. 72, 1514 (1984)Google Scholar
  32. 32.
    L.E. Brus, J. Chem. Phys. 90, 2555 (1986)CrossRefGoogle Scholar
  33. 33.
    S.J.O. Hardman, D.M. Graham, S.K. Stubbs, B.F. Spencer, E.A. Seddon, H.-T. Fung, S. Gardonio, F. Sirotti, M.G. Silly, J. Akhtar, P. O’Brien, D.J. Binks, W.R. Flavell, Phys. Chem. Chem. Phys. 13, 20275 (2011)CrossRefGoogle Scholar
  34. 34.
    B. Carlson, K. Leschkies, E.S. Aydil, X.Y. Zhu, J. Phys. Chem. C 112, 8419–8423 (2008)CrossRefGoogle Scholar
  35. 35.
    A. Phuruangrat, T. Thongtem, B. Kuntalue, S. Thongtem, Mater. Lett. 81, 55–58 (2012)CrossRefGoogle Scholar
  36. 36.
    G. Nabiyouni, P. Boroojerdian, K. Hedayati, D. Ghanbari, High Temp. Mater. Process. 31, 723–725 (2012)CrossRefGoogle Scholar
  37. 37.
    D. Wanga, D. Yua, M. Moa, X. Liub, Y. Qian, Solid State Commun. 125, 475–479 (2003)CrossRefGoogle Scholar
  38. 38.
    Y. Jianga, Y. Wua, B. Xiea, Sh Yuana, X. Liub, Y. Qian, J. Cryst. Growth 231, 248–251 (2001)CrossRefGoogle Scholar
  39. 39.
    M.S. Niasari, D. Ghanbari, Particuology 10, 628–633 (2012)CrossRefGoogle Scholar
  40. 40.
    Sh Chena, W. Liu, Mater. Chem. Phys. 98, 183–189 (2006)CrossRefGoogle Scholar
  41. 41.
    M.S. Niasari, D. Ghanbari, M.R.L. Estarki, Polyhedron 35, 149–153 (2012)CrossRefGoogle Scholar
  42. 42.
    M.S. Niasari, A. Sobhani, F. Davara, J. Alloys Compd. 507, 77–83 (2010)CrossRefGoogle Scholar
  43. 43.
    Y. Ji, X. Ma, H. Zhang, J. Xu, D. Yang, J. Phys.: Condens. Matter 15, 7611–7615 (2003)Google Scholar
  44. 44.
    Y. Ni, X. Wei, J. Hong, X. Ma, Cryst. Res. Technol. 41, 885–888 (2006)CrossRefGoogle Scholar
  45. 45.
    A.A. Ebnalwaled, A.A. Abd El-Raady, A.M. Abo-Bakr, Chalcogenide Lett. 10(2), 55–62 (2013)Google Scholar
  46. 46.
    B.J. Baliga, IEEE Trans. Electron. Devices 43(10), 1717 (1996)CrossRefGoogle Scholar
  47. 47.
    B. Jayant Baliga, Fundamentals of Power Semiconductor Devices (Springer, 2008). doi: 10.1007/978-0-387-47314-7

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. A. Ebnalwaled
    • 1
  • Mohamed H. Essai
    • 2
  • B. M. Hasaneen
    • 2
  • Hossam E. Mansour
    • 1
    • 2
  1. 1.Electronics and Nano Devices Lab, Physics Department, Faculty of ScienceSouth Valley UniversityQenaEgypt
  2. 2.Electrical Engineering Department, Faculty of EngineeringAl-Azhar UniversityQenaEgypt

Personalised recommendations