Cobalt carbonate and cobalt oxide nanoparticles synthesis, characterization and supercapacitive evaluation

  • Mehdi Rahimi-Nasrabadi
  • Hamid Reza Naderi
  • Meisam Sadeghpour Karimi
  • Farhad Ahmadi
  • Seied Mahdi Pourmortazavi


Taguchi robust design methodology was used to optimize direct precipitation reaction conditions for simple and fast synthesis of cobalt carbonate nanoparticles. The effects of several parameters that influence on particle size of prepared cobalt carbonate were investigated. The significance of these parameters on the size of cobalt carbonate particles were quantitatively evaluated by using of analysis of variance (ANOVA). The results showed that flow rate and the concentrations of cobalt and carbonate solutions have significant effect on the size of cobalt carbonate nanoparticles. Also, optimum conditions for synthesis of cobalt carbonate nanoparticles via precipitation reaction were achieved. The ANOVA demonstrated that under optimum condition, cobalt carbonate nanoparticles will have of 39.6 ± 2.2 nm sizes. In addition, the solid state thermal decomposition reaction of precursor was used for preparation of Co3O4 nanoparticles. The results showed that the Co3O4 nanoparticles synthesized by thermal decomposition of cobalt carbonate nanoparticles have 53 nm sizes. Cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy were used to investigate the supercapacitive property of the Co3O4 electrode. The Co3O4 electrode shows high specific capacitance of 396 F g−1 at scan rate of 2 mV s−1 in 2.0 M H2SO4 electrolyte. Thus, the prepared electrode could be used for supercapacitor.


Co3O4 Electrochemical Impedance Spectroscopy Cobalt Oxide Co3O4 Nanoparticles CoCO3 Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are gratefully acknowledged the financial support provided by Iran National Science Foundation (Project 94019559).


  1. 1.
    M. Mousavi, A. Habibi-Yangjeh, J. Mater. Sci.: Mater. Electron. 27, 8532 (2016)Google Scholar
  2. 2.
    M. Pirhashemi, A. Habibi-Yangjeh, J. Mater. Sci.: Mater. Electron. 27, 4098 (2016)Google Scholar
  3. 3.
    M. Pirhashemi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 474, 103 (2016)CrossRefGoogle Scholar
  4. 4.
    B. Golzad-Nonakaran, A. Habibi-Yangjeh, Adv. Powder Technol. 27, 1427 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S.M. Pourmortazavi, F. Ahmadi, H.R. Naderi, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 27, 4541 (2016)Google Scholar
  6. 6.
    J. Tizfahm, M. Aghazadeh, M. Ghannadi Maragheh, M.R. Ganjali, P. Norouzi, F. Faridbod, Mater. Let. 167, 153 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Aghazadeh, M. Asadi, M. Ghannadi Maragheh, M.R. Ganjali, P. Norouzi, F. Faridbod, Appl. Surf. Sci. 364, 726 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Aghazadeh, M. Ghannadi Maragheh, M.R. Ganjali, P. Norouzi, F. Faridbod, Appl. Surf. Sci. 364, 141 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Aghazadeh, M. Ghannadi Maragheh, M.R. Ganjali, P. Norouzi, RSC Adv. 6(10449), 10442 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Rahimi-Nasarabadi, F. Ahmadi, S. Hamdi, N. Eslami, K. Didehban, M.R. Ganjali, J. Mol. Liq. 216, 814 (2016)CrossRefGoogle Scholar
  11. 11.
    B. Maddah, J. Shamsi, M.J. Barsang, M. Rahimi-Nasrabadi, Spectrochim. Acta Part A 142, 220 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, S.A.S. Shandiz, F. Ahmadi, H. Batooli, Nat. Prod. Res. 28, 1969 (2014)CrossRefGoogle Scholar
  13. 13.
    M.Y. Nassar, I.S. Ahmed, Polyhedron 30, 2431 (2011)CrossRefGoogle Scholar
  14. 14.
    C.C. Li, X.M. Yin, T.H. Wang, H.C. Zeng, Chem. Mater. 21, 4984 (2009)CrossRefGoogle Scholar
  15. 15.
    S.M. Pourmortazavi, M. Rahimi-Nasrabadi, A.A. Davoudi-Dehaghani, A. Javidan, M.M. Zahedi, S.S. Hajimirsadeghi, Mater. Res. Bull. 47, 1045 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Shamsipur, S.M. Pourmortazavi, S.S. Hajimirsadeghi, M.M. Zahedi, M. Rahimi-Nasrabadi, Ceram. Int. 39, 819 (2013)CrossRefGoogle Scholar
  17. 17.
    D. Japi, M. Bitenc, M. Marinšek, Z. Crnjak Orel, Mater. Res. Bull. 60, 738 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Zhao, Z. Tao, J. Liang, J. Chen, Cryst. Growth Des. 8, 2799 (2008)CrossRefGoogle Scholar
  19. 19.
    Z. Zheng, B. Huang, H. Ma, X. Zhang, M. Liu, Z. Liu, Z. Liu, K.W. Wong, W.M. Lau, Cryst. Growth Des. 7, 1912 (2007)CrossRefGoogle Scholar
  20. 20.
    O. Madelung (ed.), Physics of Non-Tetrahedrally Bonded Binary Components (Springer, New York, 1984)Google Scholar
  21. 21.
    L.M. Apatiga, V.M. Castano, Thin Solid Films 496, 576 (2006)CrossRefGoogle Scholar
  22. 22.
    S.G. Kandalkar, J.L. Gunjakar, C.D. Lokhande, O.S. Joo, J. Alloys Compd. 478, 594 (2009)CrossRefGoogle Scholar
  23. 23.
    C. Zhu, G. Saito, T. Akiyama, J. Alloys Compd. 646, 639 (2015)CrossRefGoogle Scholar
  24. 24.
    R. Hallaj, K. Akhtari, A. Salimi, S. Soltanian, Appl. Surf. Sci. 276, 512 (2013)CrossRefGoogle Scholar
  25. 25.
    K.K. Purushothaman, B. Sethuraman, M.P. Anupama, M. Dhanasankar, G. Muralidharan, Mater. Sci. Semicond. Process. 16, 1410 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Chen, L. Shao, Z. Gao, T. Ren, Z. Yuan, J. Power Sources 286, 82 (2015)CrossRefGoogle Scholar
  27. 27.
    R.A. Soomro, A. Nafady, Z.H. Ibupoto, S.T. Hussain Sherazi, M. Willander, M.I. Abro, Mater. Sci. Semicond. Process. 34, 373 (2015)CrossRefGoogle Scholar
  28. 28.
    P.A. Mangrulkar, M.M. Joshi, S.N. Tijare, V. Polshettiwar, N.K. Labhsetwar, S.S. Rayalu, Int. J. Hydrogen Energy 37, 10462 (2012)CrossRefGoogle Scholar
  29. 29.
    P. Rybak, B. Tomaszewska, A. Machocki, W. Grzegorczyk, A. Denis, Conversion of ethanol over supported cobalt oxide catalysts. Catal. Today 176, 14 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Zhang, R. Li, X. Chang, C. Xue, X. Gou, J. Power Sources 290, 25 (2015)CrossRefGoogle Scholar
  31. 31.
    S.M.I. Morsy, S.A. Shaban, A.M. Ibrahim, M.M. Selim, J. Alloys Compd. 486, 83 (2009)CrossRefGoogle Scholar
  32. 32.
    D. Alburquenque, E. Vargas, J.C. Denardin, J. Escrig, J.F. Marco, J. Ortiz, J.L. Gautier, Mater. Charact. 93, 191 (2014)CrossRefGoogle Scholar
  33. 33.
    X.H. Xia, J.P. Tu, J.Y. Xiang, X.H. Huang, X.L. Wang, X.B. Zhao, J. Power Sources 195, 2014 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Louardi, A. Rmili, F. Ouachtari, A. Bouaoud, B. Elidrissi, H. Erguig, J. Alloys Compd. 509, 9183 (2011)CrossRefGoogle Scholar
  35. 35.
    Y.C. Chen, L. Hu, M. Wang, Y.L. Min, Y.G. Zhang, Colloid Surf. A 336, 64 (2009)CrossRefGoogle Scholar
  36. 36.
    C. Nethravathi, S. Sen, N. Ravishankar, M. Rajamathi, C. Pietzonka, B. Harbrecht, J. Phys. Chem. B 109, 11468 (2005)CrossRefGoogle Scholar
  37. 37.
    A.M. Gao, J.S. Hu, H.P. Liang, W.G. Song, L.J. Wan, X.L. He, X.G. Gao, S.H. Xia, J. Phys. Chem. B 110, 15858 (2006)CrossRefGoogle Scholar
  38. 38.
    B. Li, Y. Xie, C. Wu, Z. Li, J. Zhang, Mater. Chem. Phys. 99, 479 (2006)CrossRefGoogle Scholar
  39. 39.
    S.M. Pourmortazavi, M. Rahimi-Nasrabadi, Y. Fazli, M. Mohammad-Zadeh, Appl. Phys. A 119, 929 (2015)CrossRefGoogle Scholar
  40. 40.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, J. Mol. Struct. 1083, 229 (2015)CrossRefGoogle Scholar
  41. 41.
    S.M. Pourmortazavi, M. Rahimi-Nasrabadi, Y. Fazli, M. Mohammad-Zadeh, Int. J. Refract. Met. Hard Mater. 51, 29 (2015)CrossRefGoogle Scholar
  42. 42.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, Mater. Manuf. Process. 30, 34 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, S.S. Hajimirsadeghi, M.M. Zahedi, J. Mol. Struct. 1047, 31 (2013)CrossRefGoogle Scholar
  44. 44.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, A.A. Davoudi-Dehaghani, S.S. Hajimirsadeghi, M.M. Zahedi, Cryst. Eng. Comm. 15, 4077 (2013)CrossRefGoogle Scholar
  45. 45.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, S.S. Hajimirsadeghi, M.M. Zahedi, Open Chem. 11, 1393 (2013)CrossRefGoogle Scholar
  46. 46.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, A.R. Banan, F. Ahmadi, J. Mol. Struct. 1074, 85 (2014)CrossRefGoogle Scholar
  47. 47.
    H.R. Naderi, P. Norouzi, M.R. Ganjali, Mater. Chem. Phys. 163, 38 (2015)CrossRefGoogle Scholar
  48. 48.
    A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, RSC Adv. 5, 46050 (2015)CrossRefGoogle Scholar
  49. 49.
    H.R. Naderi, H.R. Mortaheb, A. Zolfaghari, J. Electroanal. Chem. 719, 98 (2014)CrossRefGoogle Scholar
  50. 50.
    H.R. Naderi, P. Norouzi, M.R. Ganjali, Appl. Surf. Sci. 366, 552 (2016)CrossRefGoogle Scholar
  51. 51.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, New York, 1999)CrossRefGoogle Scholar
  52. 52.
    A. Zolfaghari, H.R. Naderi, H.R. Mortaheb, J. Electroanal. Chem. 697, 60 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mehdi Rahimi-Nasrabadi
    • 1
    • 2
  • Hamid Reza Naderi
    • 3
  • Meisam Sadeghpour Karimi
    • 4
  • Farhad Ahmadi
    • 5
  • Seied Mahdi Pourmortazavi
    • 6
  1. 1.Faculty of PharmacyBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Department of ChemistryImam Hossein UniversityTehranIran
  3. 3.Center of Excellence in ElectrochemistryUniversity of TehranTehranIran
  4. 4.Faculty of Chemistry and Chemical EngineeringMalek Ashtar University of TechnologyTehranIran
  5. 5.Department of Medicinal Chemistry, School of Pharmacy-International CampusIran University of Medical SciencesTehranIran
  6. 6.Faculty of Material and Manufacturing TechnologiesMalek Ashtar University of TechnologyTehranIran

Personalised recommendations