Fabrication of p-type ZnTe NW/In Schottky diodes for high-speed photodetectors

  • Yuan Chang
  • Di Wu
  • Tingting Xu
  • Zhifeng Shi
  • Yongtao Tian
  • Xinjian Li


Nitrogen-doped p-type ZnTe nanowires were successfully synthesized by a chemical vapor deposition method. Schottky junctions based on Au/ZnTe NW/In structure were constructed and their device performances were studied. ZnTe/In Schottky junction devices show excellent rectifying characteristics with rectification ratio up to 103 within ±5 V. Photoresponse analysis reveals that such devices were highly sensitive to varying optical signal with excellent stability, reproducibility and fast response speeds of 69/120 μs. These results demonstrate that ZnTe/In Schottky junction devices will promote the applications of ZnTe 1D nanostructures in electronic and optoelectronics.


ZnTe Schottky Barrier Ideality Factor Schottky Diode Rectification Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by financial support from the National Natural Science Foundation of China (Nos. 61605174 and 11504331), the China Postdoctoral Science Foundation (No. 2015M582194), Educational Department of Henan Province (No. 17A140012) and Startup Research Fund of Zhengzhou University (1512317002).


  1. 1.
    J. Yao, H. Yan, S. Das, J.F. Klemic, J.C. Ellenbogen, C.M. Lieber, Nanowire nanocomputer as a finite-state machine. Proc. Natl. Acad. Sci. U. S. A. 111, 2431–2435 (2014)CrossRefGoogle Scholar
  2. 2.
    W. Shim, J. Yao, C.M. Lieber, Programmable resistive-switch nanowire transistor logic circuits. Nano Lett. 14, 5430–5436 (2014)CrossRefGoogle Scholar
  3. 3.
    T.J. Kempa, R.W. Day, S.-K. Kim, H.-G. Park, C.M. Lieber, Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 6, 719 (2013)CrossRefGoogle Scholar
  4. 4.
    F. Gao, D. Zhang, J. Wang, H. Sun, Y. Yin, Y. Sheng, S. Yan, B. Yan, C. Sui, Y. Zheng, Y. Shi, J. Liu, Ultraviolet electroluminescence from Au–ZnO nanowire Schottky type light-emitting diodes. Appl. Phys. Lett. 108, 261103 (2016)CrossRefGoogle Scholar
  5. 5.
    M.M. Momeni, Y. Ghayeb, Cobalt modified tungsten–titania nanotube composite photoanodes for photoelectrochemical solar water splitting. J. Mater. Sci. Mater. Electron. 27, 3318–3327 (2015)CrossRefGoogle Scholar
  6. 6.
    M.M. Momeni, Fabrication of copper decorated tungsten oxide-titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light. Appl. Surf. Sci. 357, 160–166 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28, 403–433 (2016)CrossRefGoogle Scholar
  8. 8.
    S.J. Oh, C. Uswachoke, T. Zhao, J.-H. Choi, B.T. Diroll, C.B. Murray, C.R. Kagan, Selective p-and n-doping of colloidal PbSe nanowires to construct electronic and optoelectronic devices. ACS Nano 9, 7536–7544 (2015)CrossRefGoogle Scholar
  9. 9.
    Z. Liu, J. Xu, D. Chen, G. Shen, Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44, 161–192 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Peng, L.F. Hu, X.S. Fang, Low-dimensional nanostructure ultraviolet photodetectors. Adv. Mater. 25, 5321–5328 (2013)CrossRefGoogle Scholar
  11. 11.
    M.M. Momeni, I. Ahadzadeh, A. Rahmati, Nitrogen, carbon and iron multiple-co doped titanium dioxide nanotubes as a new high-performance photo catalyst. J. Mater. Sci. Mater. Electron. 27, 8646–8653 (2016)CrossRefGoogle Scholar
  12. 12.
    M.M. Momeni, M. Mirhosseini, M. Chavoshi, A. Hakimizade, The effect of anodizing voltage on morphology and photocatalytic activity of tantalum oxide nanostructure. J. Mater. Sci. Mater. Electron. 27, 3941–3947 (2015)CrossRefGoogle Scholar
  13. 13.
    M.I.B. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, Q. Xiong, Synthesis and optical properties of II–VI 1D nanostructures. Nanoscale 4, 1422–1435 (2012)CrossRefGoogle Scholar
  14. 14.
    D. Wu, Y. Jiang, Y.G. Zhang, J.W. Li, Y.Q. Yu, Y.P. Zhang, Z.F. Zhu, L. Wang, C.Y. Wu, L.B. Luo, J.S. Jie, Device structure-dependent field-effect and photoresponse performances of p-type ZnTe: Sb nanoribbons. J. Mater. Chem. 22, 6206–6212 (2012)CrossRefGoogle Scholar
  15. 15.
    L. Wang, H.-W. Song, Z.-X. Liu, X. Ma, R. Chen, Y.-Q. Yu, C.-Y. Wu, J.-G. Hu, Y. Zhang, Q. Li, L.-B. Luo, Core–shell CdS: Ga–ZnTe: Sb p–n nano-heterojunctions: fabrication and optoelectronic characteristics. J. Mater. Chem. C 3, 2933–2939 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Wu, Y. Jiang, X. Yao, Y. Chang, Y. Zhang, Y. Yu, Z. Zhu, Y. Zhang, X. Lan, H. Zhong, Construction of crossed heterojunctions from p-ZnTe and n-CdSe nanoribbons and their photoresponse properties. J. Mater. Chem. C 2, 6547–6553 (2014)CrossRefGoogle Scholar
  17. 17.
    D. Wu, T. Xu, Z. Shi, Y. Tian, X. Li, Construction of ZnTe nanowires/Si p–n heterojunctions for electronic and optoelectronic applications. J. Alloys Compd. 661, 231–236 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Alisafaee, J. Marmon, M.A. Fiddy, Spectral properties of Au–ZnTe plasmonic nanorods. Photonics Res. 2, 10 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Wang, W. Tian, M. Liao, Y. Bando, D. Golberg, Recent advances in solution-processed inorganic nanofilm photodetectors. Chem. Soc. Rev. 43, 1400–1422 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, Y. Yu, L. Mi, H. Wang, Z. Zhu, Q. Wu, Y. Zhang, Y. Jiang, In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 12, 1062–1071 (2016)CrossRefGoogle Scholar
  21. 21.
    D. Wu, Y. Jiang, Y.G. Zhang, Y.Q. Yu, Z.F. Zhu, X.Z. Lan, F.Z. Li, C.Y. Wu, L. Wang, L.B. Luo, Self-powered and fast-speed photodetectors based on CdS: Ga nanoribbon/Au Schottky diodes. J. Mater. Chem. 22, 23272–23276 (2012)CrossRefGoogle Scholar
  22. 22.
    W.F. Jin, Y. Ye, L. Gan, B. Yu, P.C. Wu, Y. Dai, H. Meng, X.F. Guo, L. Dai, Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem. 22, 2863–2867 (2012)CrossRefGoogle Scholar
  23. 23.
    S.M. Sze, K.K. Ng, Physics of semiconductor devices (Wiley, New York, 2007)Google Scholar
  24. 24.
    L.-B. Luo, S.-H. Zhang, R. Lu, W. Sun, Q.-L. Fang, C.-Y. Wu, J.-G. Hu, L. Wang, p-type ZnTe: Ga nanowires: controlled doping and optoelectronic device application. RSC Adv. 5, 13324–13330 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Wang, X. Ma, R. Chen, Y.-Q. Yu, L.-B. Luo, Ultraviolet nano-photodetector based on ZnS: Cl nanoribbon/Au Schottky junctions. J. Mater. Sci. Mater. Electron. 26, 4290–4297 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, L. Du, Y. Lei, H. Zhao, Construction of high-quality CdSe NB/graphene Schottky diodes for optoelectronic applications. Mater. Lett. 131, 288–291 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, X. Fan, S.T. Lee, Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 17, 1795–1800 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Bhunia, D.N. Bose, Schottky barrier studies on single crystal ZnTe and determination of interface index. J. Appl. Phys. 87, 2931 (2000)CrossRefGoogle Scholar
  29. 29.
    C. Park, J. Lee, H.-M. So, W.S. Chang, An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth. J. Mater. Chem. C 3, 2737–2743 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yuan Chang
    • 1
  • Di Wu
    • 1
  • Tingting Xu
    • 1
  • Zhifeng Shi
    • 1
  • Yongtao Tian
    • 1
  • Xinjian Li
    • 1
  1. 1.Department of Physics and Engineering, and Key Laboratory of Material PhysicsZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations