RETRACTED ARTICLE: A new approach on preparation and characterization of zinc oxide deposited carbon nanotubes based materials applicable for electronic and optoelectronic devices

  • A. Salar Elahi
  • M. Ghoranneviss


ZnO is a wide-band-gap semiconductor material that is now being developed for many applications, including ultraviolet (UV) light-emitting diodes, UV photodetectors, transparent thin-film transistors, and gas sensors. It can be grown as boules, as thin films, or as nanostructures of many types and shapes. However, as with any useful semiconductor material, its electrical and optical properties are controlled by impurities and defects. We have reviewed the growth and analysis of carbon molecular crystals by the plasma enhanced chemical vapour deposition method. The three main synthesis methods of Carbon Nanocrystals (CNCs) are the arc discharge, the laser ablation and the chemical vapour deposition with a special regard to the later one. By two different methods ZnO layers were coated on the tubes. RF sputtering was one of the ways to directly deposit ZnO thin layer on the MWCNCs. On the other hand, we used thermally physical vapour deposition for making thin Zn film to oxidize it later. Scanning electron microscopy and also Raman spectroscopy measurements of the prepared samples confirmed the presence of ZnO nanolayers on the CNC bodies.


Field Emission Property Field Enhancement Factor Conductive Carbon Black Hydroxide Monohydrate Show Field Emission Scanning Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. (Weinh. Ger.) 15, 353–389 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Iijima, Helical microtubules of graphitic carbon. Nature (London) 354, 56–58 (1991)CrossRefGoogle Scholar
  3. 3.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes; Synthesis, Structure, Properties, and Applications (Springer, New York, 2001)Google Scholar
  4. 4.
    W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness Carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)CrossRefGoogle Scholar
  5. 5.
    I.C. Chen, L.H. Chen, X.R. Ye, C. Daraio, S. Jin, C.A. Orme, A. Quist, R. Lal, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102–153104 (2006)CrossRefGoogle Scholar
  6. 6.
    S.S. Wong, A.T. Woolley, E. Joselevich, C.M. Lieber, Functionalization of carbon nanotube AFM probes using tip-activated gases. Chem. Phys. Lett. 306, 219–225 (1999)CrossRefGoogle Scholar
  7. 7.
    R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph Avouris, Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)CrossRefGoogle Scholar
  8. 8.
    Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308–3310 (1997)CrossRefGoogle Scholar
  9. 9.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of Carbon nanotubes and their field emission properties. Science 283, 512–514 (1990)CrossRefGoogle Scholar
  10. 10.
    C.S. Huang, C.Y. Yeh, Y.H. Chang, Y.M. Hsieh, C.Y. Ku, Q.T. Lai, Field emission properties of CNT-ZnO composite materials. Diam. Relat. Mater. 18, 452–456 (2009)CrossRefGoogle Scholar
  11. 11.
    W.A. de Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)CrossRefGoogle Scholar
  12. 12.
    A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tománek, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)CrossRefGoogle Scholar
  13. 13.
    N. de Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube. Nature (London) 420, 393–395 (2002)CrossRefGoogle Scholar
  14. 14.
    J. Jiao, L.F. Dong, D.W. Tuggle, C.L. Mosher, S. Foxley, J. Tawdekar, Fabrication and characterization of carbon nanotube field emitters. Mater. Res. Soc. Symp. Proc. 706, 113–117 (2002)Google Scholar
  15. 15.
    W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75, 873–875 (1999)CrossRefGoogle Scholar
  16. 16.
    J.M. Bonard, J.P. Salvetat, T. Stöckli, L. Forró, A. Châtelain, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl. Phys. A Mater. Sci. Process. 69, 245–254 (1999)CrossRefGoogle Scholar
  17. 17.
    M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Raman spectroscopy and field emission properties of CVD-grown carbon nanotube films. Appl. Phys. A 73, 409–418 (2001)CrossRefGoogle Scholar
  18. 18.
    J.M. Green, L. Dong, T. Gutu, J. Jiao, J.F. Conley, Y. Ono, ZnO-nanoparticle-coated carbon nanotubes demonstrating enhanced electron field-emission properties. J. Appl. Phys. 99, 094308–094311 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Kim, W. Sigmund, Zinc oxide nanowires on carbon nanotubes. Appl. Phys. Lett. 81, 2085–2087 (2002)CrossRefGoogle Scholar
  20. 20.
    A. Salar Elahi et al., J. Fusion Energy 34(3), 449–455 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Salar Elahi et al., J. Cryst. Growth 415(1), 166–169 (2015)Google Scholar
  22. 22.
    A. Salar Elahi et al., Mater. Manuf. Process. 30(11), 1348–1353 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(4), 942–947 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Salar Elahi et al., Fusion Eng. Des. 94, 1–6 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(5), 1040–1043 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Salar Elahi et al., J. Alloys. Compd. 644, 97–100 (2015)CrossRefGoogle Scholar
  27. 27.
    A. Salar Elahi et al., Mol. Cryst. Liq. Cryst. 629(1), 158–164 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Salar Elahi et al., Radiat. Eff. Defects Solids 170(6), 541–547 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Salar Elahi et al., J. Alloys. Compd. 648, 1104–1108 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(6), 1470–1477 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(6), 1486–1489 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Salar Elahi et al., Int. J. Mater. Prod. Technol. 52(3–4), 353–361 (2016)CrossRefGoogle Scholar
  33. 33.
    A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(1), 254–258 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(1), 270–275 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Salar Elahi et al., J. Cryst. Growth 438, 70–75 (2016)CrossRefGoogle Scholar
  36. 36.
    A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(4), 773–779 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(4), 889–894 (2016)CrossRefGoogle Scholar
  38. 38.
    A. Salar Elahi et al., J. Cryst. Growth 447, 62–66 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Salar Elahi et al., J. Alloys Compd. 687, 72–78 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations