Na doping effects on the structural, conduction type and optical properties of sol–gel ZnO thin films

  • A. Chelouche
  • T. Touam
  • F. Boudjouan
  • D. Djouadi
  • R. Mahiou
  • A. Bouloufa
  • G. Chadeyron
  • Z. Hadjoub


In this work we report on the sol–gel deposition of Na doped ZnO thin films on quartz substrates. The effects of Na doping concentrations (0, 3, 6 and 9 at.%) on structural, morphological, electrical and optical properties of the synthesized films were systematically investigated by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), Hall-effect measurements, UV–Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. XRD patterns showed that the prepared films were highly c-axis oriented exhibiting hexagonal wurtzite structure of ZnO. Raman spectra of All the ZnO films exhibited similar scattering peaks corresponding to the Raman active modes of ZnO wurtzite hexagonal structure. AFM images indicated that grain size and surface roughness of the films were affected by Na doping. From the Hall-effect measurements, it was found that carrier type is dependent on Na content. The UV–Vis–NIR spectroscopy analyses revealed that all the films were highly transparent in the visible region. Room temperature PL spectra demonstrated that UV emission of the Na-doped ZnO thin films depends on the Na concentration. In particular, the undoped sample shows the highest emission intensity, while the p-type Na doped ZnO film at 3 at.% exhibits the lowest one.


Quartz Substrate Valence Band Maximum Conduction Band Minimum NaZn Lower Diffraction Angle Side 



This research was supported in part by a grant from the Agence Thématique de Recherche en Sciences and Technologie (ATRST), Alger, Algeria.


  1. 1.
    Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21(9), 11448 (2013)CrossRefGoogle Scholar
  2. 2.
    Z. Zang, X. Zeng, J. Du, M. Wang, X. Tang, Opt. Lett. 41, 3463 (2016)CrossRefGoogle Scholar
  3. 3.
    M.M. Momeni, Indian J. Chem. Sect. A 55, 686 (2016)Google Scholar
  4. 4.
    J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao, Prog. Mater. Sci. 58, 874 (2013)CrossRefGoogle Scholar
  5. 5.
    E.C. Lee, K.J. Chang, Phys. Rev. B 70, 115210 (2004)CrossRefGoogle Scholar
  6. 6.
    C.H. Park, S.B. Zhang, S.H. Wei, Phys. Rev. B 66, 073202 (2002)CrossRefGoogle Scholar
  7. 7.
    Z.C. Feng, Handbook of Zinc Oxide and Related Materials: Materials, vol. 1 (CRC press Taylor and Francis, New York, 2013), p. 93Google Scholar
  8. 8.
    J. Huang, J. Qi, Z. Li, J. Liu, Nanotechnology 24, 395203 (2013)CrossRefGoogle Scholar
  9. 9.
    S.S. Lin, H.P. He, Y.F. Lu, Z.Z. Ye, J. Appl. Phys. 106, 093508 (2009)CrossRefGoogle Scholar
  10. 10.
    H. He, S. Lin, G. Yuan, L. Zhang, W. Zhang, L. Luo, Y. Cao, Z. Ye, S.T. Lee, J. Phys. Chem. C 115, 19018 (2011)CrossRefGoogle Scholar
  11. 11.
    Z. Zheng, Y.F. Lu, Z.Z. Ye, H.P. He, B.H. Zhao, Mater. Sci. Semicond. Proc. 16, 647 (2013)CrossRefGoogle Scholar
  12. 12.
    S.S. Lin, Z.Z. Ye, J.G. Lu, H.P. He, L.X. Chen, X.Q. Gu, J.Y. Huang, L.P. Zhu, B.H. Zhao, J. Phys. D Appl. Phys. 41, 155114 (2008)CrossRefGoogle Scholar
  13. 13.
    W. Liu, F. Xiu, K. Sun, Y.H. Xie, K.L. Wang, Y. Wang, J. Zou, Z. Yang, J. Liu, J. Am. Chem. Soc. 132, 2498 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Li, Y. Zhang, H. He, Z. Ye, J. Jiang, L. Cao, Mater. Lett. 76, 81 (2012)CrossRefGoogle Scholar
  15. 15.
    L.L. Yang, Z.Z. Ye, L.P. Zhu, Y.J. Zeng, Y.F. Lu, B.H. Zhao, Electron. Mater. 36, 498 (2007)CrossRefGoogle Scholar
  16. 16.
    W. Ko, S. Lee, G. Baek, J.P. Hong, Curr. Appl. Phys. 14, S103 (2014)CrossRefGoogle Scholar
  17. 17.
    X.H. Pan, Y.S. Zhou, S.S. Chen, P. Ding, B. Lu, J.Y. Huang, Z.Z. Ye, J. Cryst. Growth 404, 54 (2014)CrossRefGoogle Scholar
  18. 18.
    Y.F. Lu, K.W. Wu, Y.J. Zeng, Z.Z. Ye, J.Y. Huang, L.P. Zhu, B.H. Zhao, Chem. Phys. Lett. 582, 82 (2013)CrossRefGoogle Scholar
  19. 19.
    K.J. Kim, P.B. Kreider, C. Choi, C.H. Chang, H.G. Ahn, RSC Adv. 3, 12702 (2013)CrossRefGoogle Scholar
  20. 20.
    J.J. Lai, Y.J. Lin, Y.H. Chen, H.C. Chang, C.J. Liu, Y.Y. Zou, Y.T. Shih, M.C. Wang, J. Appl. Phys. 110, 013704 (2011)CrossRefGoogle Scholar
  21. 21.
    F. Boudjouan, A. Chelouche, T. Touam, D. Djouadi, S. Khodja, M. Tazerout, Y. Ouerdane, Z. Hadjoub, J. Lumin. 158, 32 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Boudjouan, A. Chelouche, T. Touam, D. Djouadi, Y. Ouerdane, Mater. Sci. Semicond. Proc. 41, 382 (2016)CrossRefGoogle Scholar
  23. 23.
    L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, M. Zhou, J. Alloys. Compd. 623, 367 (2015)CrossRefGoogle Scholar
  24. 24.
    M.K. Puchert, P.Y. Timbrell, R.N. Lamb, J. Vac. Sci. Technol. 14, 2220 (1996)CrossRefGoogle Scholar
  25. 25.
    M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, J. Cryst. Growth 220, 254 (2000)CrossRefGoogle Scholar
  26. 26.
    S.B. Yahia, L. Znaidi, A. Kanaev, J.P. Petitet, Spectrochim. Acta A 71, 1234 (2008)CrossRefGoogle Scholar
  27. 27.
    J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978)CrossRefGoogle Scholar
  28. 28.
    S. Kumar, R. Thangavel, J. Sol–Gel Sci. Technol. 67, 50 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Lü, K. Huang, J. Zhu, X. Chen, X. Song, Z. Sun, Phys. B 405, 3167 (2010)CrossRefGoogle Scholar
  30. 30.
    L. Xu, X. Li, J. Yuan, Superlattice Microstruct. 44, 276 (2008)CrossRefGoogle Scholar
  31. 31.
    R.S. Sreedharan, V. Ganesan, C.P. Sudarsanakumar, K. Bhavsar, R. Prabhu, V.P.P.M. Pillai, Nano Rev 6, 26759 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Koyano, P. Quocbao, L.T. Thanbbinh, L. Hongha, N. Ngoclong, S. Katayama, Phys. Stat. Sol. A 193, 125 (2002)CrossRefGoogle Scholar
  33. 33.
    S.S. Shinde, P.S. Shinde, V.G. Sathe, S.R. Barman, C.H. Bhosale, K.Y. Rajpure, J. Mol. Struct. 984, 186 (2010)CrossRefGoogle Scholar
  34. 34.
    K.A. Alim, V.A. Fonoberov, M. Shamsa, A.A. Balandin, J. Appl. Phys. 97, 124313 (2005)CrossRefGoogle Scholar
  35. 35.
    S.J. Chen, Y.C. Liu, Y.M. Lua, J.Y. Zhang, D.Z. Shen, X.W. Fan, J. Cryst. Growth 289, 55 (2006)CrossRefGoogle Scholar
  36. 36.
    O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B.R. Cuenya, H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010)CrossRefGoogle Scholar
  37. 37.
    H.Q. Ni, Y.F. Lu, Z.Y. Liu, H. Qiu, W.J. Wang, Z.M. Ren, S.K. Chow, Y.X. Jie, Appl. Phys. Lett. 79, 812 (2001)CrossRefGoogle Scholar
  38. 38.
    D. Nečas, P. Klapetek, Cent. Eur. J. Phys. 10, 181 (2012)Google Scholar
  39. 39.
    Q. Wan, B. Shao, Z. Xiong, D. Li, G. Liu, Appl. Mech. Mater. 665, 124 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Dehimi, T. Touam, A. Chelouche, F. Boudjouan, D. Djouadi, J. Solard, A. Fischer, A. Boudrioua, A. Doghmane, Adv. Condens. Matter Phys. 2015, 740208 (2015)CrossRefGoogle Scholar
  41. 41.
    T. Touam, M. Atoui, I. Hadjoub, A. Chelouche, B. Boudine, A. Fischer, A. Boudrioua, A. Doghmane, Eur. Phys. J. Appl. Phys. 67, 30302 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Wang, E.J. Kim, S. Kim, J.S. Chung, I. Yoo, E.W. Hahn, S.H. Shin, C. Park, Thin Solid Films 516, 1124 (2008)CrossRefGoogle Scholar
  43. 43.
    M.C. Jun, J.H. Koh, Nanoscale Res. Lett. 7, 294 (2012)CrossRefGoogle Scholar
  44. 44.
    M. Futsuhara, K. Yoshioka, O. Takai, Thin Solid Films 317, 322 (1998)CrossRefGoogle Scholar
  45. 45.
    S. Ghosh, G.G. Khan, S. Varma, K. Mandal, Appl. Mater. Interface 5, 2455 (2013)CrossRefGoogle Scholar
  46. 46.
    O. Lopatiuk-Tirpak, W.V. Schoenfeld, L. Chernyak, F.X. Xiu, J.L. Liu, A. Osinsky, P. Chow, Appl. Phys. Lett. 88, 202110 (2006)CrossRefGoogle Scholar
  47. 47.
    K. Vanheusden, W.L. Warren, J.A. Voigt, C.H. Seager, D.R. Tallant, Appl. Phys. Lett. 67, 1280 (1995)CrossRefGoogle Scholar
  48. 48.
    A.B. Djurisic, Y.H. Leung, Small 2(8–9), 944 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Chelouche
    • 1
  • T. Touam
    • 2
    • 5
  • F. Boudjouan
    • 1
  • D. Djouadi
    • 1
  • R. Mahiou
    • 3
  • A. Bouloufa
    • 4
  • G. Chadeyron
    • 3
  • Z. Hadjoub
    • 2
  1. 1.Laboratoire de Génie de l’Environnement, Faculté de TechnologieUniversité de BejaiaBejaïaAlgeria
  2. 2.Laboratoire des Semi-conducteursUniversité Badji MokhtarAnnabaAlgeria
  3. 3.Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS/UBP/Sigma ClermontUniversité Clermont AuvergneAubièreFrance
  4. 4.Laboratoire d’électrochimie et Matériaux, Département d’électronique, Faculté de TechnologieUniversité Sétif-1SétifAlgeria
  5. 5.Unité de Recherche en Optique et Photonique, UROP – CDTAUniversité Ferhat Abbas Sétif 1SétifAlgeria

Personalised recommendations