Advertisement

Highly conductive reduced graphene oxide transparent ultrathin film through joule-heat induced direct reduction

  • A. M. Bazargan
  • F. Sharif
  • S. Mazinani
  • N. Naderi
Article

Abstract

Graphene, an outstanding material with remarkable electrical, mechanical and thermal properties, has found tremendous potential in electronic devices. Here we report the direct and irreversible reduction of graphene oxide (GO) ultrathin film (UTF) by application of 30 V bias on GO device under the ambient condition. During the process, an ultrahigh current density flowed through UTF resulting in the Joule-heat generation. The heat effectively removed the oxygen-containing groups from GO and restored graphene layer π-conjugated system reducing the electrical resistance down to ~10.7 Ω. The film also exhibited a linear, symmetric and hysteresis-free current response to the biases in the range of −2 to 2 V. Moreover, the sheet resistance as low as ~125 Ω/□ and optical transmittance of 91 % at 550 nm demonstrated that the reduced GO (rGO) UTF is superior to the conventional transparent electrodes. The rGO transparent conductive film sustained an ultrahigh current density in the order of 107 A cm−2 and showed high current stability in the saturated state, which make it an ideal candidate for transparent electrode applications.

Keywords

Atomic Force Microscopy Graphene Oxide Field Emission Scan Electron Microscope Resistive Switching Versus Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Feng, R. Cheng, X. Zhao, X.F. Duan, J. Li, Nat. Commun. 4, 1539 (2013)CrossRefGoogle Scholar
  2. 2.
    B. Wang, M. Huang, L. Tao, S.H. Lee, A.-R. Jang, B.-W. Li, H.S. Shin, D. Akinwande, R.S. Ruoff, ACS Nano 10, 1404 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Yun, Y. Lim, G.N. Jang, D. Kim, S.-J. Lee, H. Park, S.Y. Hong, G. Lee, G. Zi, J.S. Ha, Nano Energy 19, 401 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, ACS Appl. Mater. Interfaces 8, 4724 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Majee, M. Song, S.-L. Zhang, Z.-B. Zhang, Carbon 102, 51 (2016)CrossRefGoogle Scholar
  6. 6.
    M.C.F. Costa, H.B. Ribeiro, F. Kessler, E.A. Souza, G.J. Fechine, Mater. Res. Express 3, 025303 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Li, L. Colombo, R.S. Ruoff, Adv. Mater. (2016). doi: 10.1002/adma.201504760 Google Scholar
  8. 8.
    F.D. Natterer, J. Ha, H. Baek, D. Zhang, W.G. Cullen, N.B. Zhitenev, Y. Kuk, J.A. Stroscio, Phys. Rev. B 93, 045406 (2016)CrossRefGoogle Scholar
  9. 9.
    O. Akhavan, Carbon 81, 158 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Tang, X.H. Xia, Y.J. Zhang, Y.Y. Tong, X.L. Wang, C.D. Gu, J.P. Tu, Electrochim. Acta 180, 1068 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Wu, J. Jiu, T. Araki, H. Koga, T. Sekitani, H. Wang, K. Suganuma, RSC Adv. 6, 15838 (2016)CrossRefGoogle Scholar
  12. 12.
    O.O. Ekiz, M. Urel, H. Guner, A.K. Mizrak, A. Dana, ACS Nano 5, 2475 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotech. 3, 270 (2008)CrossRefGoogle Scholar
  14. 14.
    S.Z. Moghaddam, S. Sabury, F. Sharif, RSC Adv. 4, 8711 (2014)CrossRefGoogle Scholar
  15. 15.
    N. Yousefi, M.M. Gudarzi, Q. Zheng, S.H. Aboutalebi, F. Sharif, J.-K. Kim, J. Mater. Chem. 22, 12709 (2012)CrossRefGoogle Scholar
  16. 16.
    Z.-Z. Yang, Q. Zheng, H. Qiu, J. Li, J.-H. Yang, New Carbon Mater. 30, 41 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Chem. Mater. 24, 2292 (2012)CrossRefGoogle Scholar
  18. 18.
    P.V. Kumar, N.M. Bardhan, G.-Y. Chen, Z. Li, A.M. Belcher, J.C. Grossman, Carbon 100, 90 (2016)CrossRefGoogle Scholar
  19. 19.
    S.-N. Kwon, C.-H. Jung, S.-I. Na, Org. Electron. 34, 67 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. He, J. Li, K. Luo, L. Li, J. Chen, J. Li, Ind. Eng. Chem. Res. 55, 3775 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, H.-L. Ma, Q. Zhang, J. Peng, J. Li, M. Zhai, Z.-Z. Yu, J. Mater. Chem. 22, 13064 (2012)CrossRefGoogle Scholar
  22. 22.
    N. Kim, G. Xin, S.M. Cho, C. Pang, H. Chae, Curr. Appl. Phys. 15, 953 (2015)CrossRefGoogle Scholar
  23. 23.
    A.A. Vernekar, G. Mugesh, Chem. Eur. J. 19, 16699 (2013)CrossRefGoogle Scholar
  24. 24.
    X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, M. Gu, Nat. Commun. 6, 6984 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Matsumoto, M. Koinuma, S.Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida, ACS Appl. Mater. Interfaces 2, 3461 (2010)CrossRefGoogle Scholar
  26. 26.
    P. Yao, P. Chen, L. Jiang, H. Zhao, H. Zhu, D. Zhou, W. Hu, B. Han, M. Liu, Adv. Mater. 22, 5008 (2010)CrossRefGoogle Scholar
  27. 27.
    M.M. Gudarzi, F. Sharif, Soft Matter 7, 3432 (2011)CrossRefGoogle Scholar
  28. 28.
    K.H. Lee, B. Lee, S.-J. Hwang, J.-U. Lee, H. Cheong, O.-S. Kwon, K. Shin, N. Hur, Carbon 69, 327 (2014)CrossRefGoogle Scholar
  29. 29.
    N.V. Medhekar, A. Ramasubramaniam, R.S. Ruoff, V.B. Shenoy, ACS Nano 27, 2300 (2010)CrossRefGoogle Scholar
  30. 30.
    A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J. Mater. Sci. Mater. Electron. 27, 8221 (2016)CrossRefGoogle Scholar
  31. 31.
    A.C. Ferrari, D.M. Basko, Nat. Nanotech. 8, 235 (2013)CrossRefGoogle Scholar
  32. 32.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  33. 33.
    Q. Zheng, W. Hing, X. Lin, N. Yousefi, K.K. Yeung, Z. Li, J. Kim, ACS Nano 5, 6039 (2011)CrossRefGoogle Scholar
  34. 34.
    Y. Tu, T. Ichii, T. Utsunomiya, H. Sugimura, Appl. Phys. Lett. 106, 133105 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chem. Commun. 46, 1112 (2010)CrossRefGoogle Scholar
  36. 36.
    H. Liu, L. Zhang, Y. Guo, C. Cheng, L. Yang, L. Jiang, G. Yu, W. Hu, Y. Liu, D. Zhu, J. Mater. Chem. C 1, 3104 (2013)CrossRefGoogle Scholar
  37. 37.
    M.A. Velasco-Soto, S.A. Pérez-García, J. Alvarez-Quintana, Y. Cao, L. Nyborg, L. Licea-Jiménez, Carbon 93, 967 (2015)CrossRefGoogle Scholar
  38. 38.
    R. Kumar, S. Naqvi, N. Gupta, K. Gaurav, S. Khan, P. Kumar, A. Rana, R.K. Singh, R. Bharadwaj, S. Chand, RSC Adv. 5, 35893 (2015)CrossRefGoogle Scholar
  39. 39.
    Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, AIP Adv. 2, 032146 (2012)CrossRefGoogle Scholar
  40. 40.
    L.G. De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, C. Zhou, ACS Nano 4, 2865 (2010)CrossRefGoogle Scholar
  41. 41.
    X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Nano Lett. 9, 4359 (2009)CrossRefGoogle Scholar
  42. 42.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y. Song, Y. Kim, K.S. Kim, B. Ozyilmaz, J. Ahn, B.H. Hong, S. Iijima, Nat. Nanotech. 5, 574 (2010)CrossRefGoogle Scholar
  43. 43.
    K. Huang, Y. Yang, Y. Qin, G. Yang, Int. J. Adv. Manuf. Technol. 69, 2651 (2013)CrossRefGoogle Scholar
  44. 44.
    F.L. Bakker, J. Flipse, B.J. Wees, J. Appl. Phys. 111, 084306 (2012)CrossRefGoogle Scholar
  45. 45.
    J. Moser, A. Barreiro, A. Bachtold, Appl. Phys. Lett. 91, 163513 (2007)CrossRefGoogle Scholar
  46. 46.
    A. Malapanis, E. Comfort, J.U. Lee, Appl. Phys. Lett. 98, 263108 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Yamaguchi, S. Nasu, H. Tanigawa, T. Ono, K. Miyake, K. Mibu, T. Shinjo, Appl. Phys. Lett. 86, 012511 (2005)CrossRefGoogle Scholar
  48. 48.
    A.B. Kaiser, C. Gómez-Navarro, R.S. Sundaram, M. Burghard, K. Kern, Nano Lett. 9, 1787 (2009)CrossRefGoogle Scholar
  49. 49.
    V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Mater. Sci. Eng. B 193, 49 (2015)CrossRefGoogle Scholar
  50. 50.
    Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, H. Zhang, ACS Nano 4, 3201 (2010)CrossRefGoogle Scholar
  51. 51.
    V. López, R.S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, K. Kern, Adv. Mater. 21, 4683 (2009)CrossRefGoogle Scholar
  52. 52.
    H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008)CrossRefGoogle Scholar
  53. 53.
    D. Kang, W.-J. Kim, J.A. Lim, Y.-W. Song, ACS Appl. Mater. Interfaces 4, 3663 (2012)CrossRefGoogle Scholar
  54. 54.
    S.J. Wang, Y. Geng, Q. Zheng, J.-K. Kim, Carbon 48, 1815 (2010)CrossRefGoogle Scholar
  55. 55.
    S. Pei, H.-M. Cheng, Carbon 50, 3210 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. M. Bazargan
    • 1
  • F. Sharif
    • 1
  • S. Mazinani
    • 2
  • N. Naderi
    • 3
  1. 1.Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyTehranIran
  2. 2.Amirkabir Nanotechnology Research Institute (ANTRI)Amirkabir University of TechnologyTehranIran
  3. 3.Materials and Energy Research Center (MERC)TehranIran

Personalised recommendations