Tuning electro-optical properties of pulsed dc magnetron sputtered indium tin oxide thin films: effects of pulsing frequency and annealing

  • R. Sivakumar
  • Mohit Kumar
  • C. Sanjeeviraja
  • T. Som


We report on effects of pulsing frequency and annealing temperature on structural and electro-optical properties of thin indium-tin-oxide (ITO) films prepared by pulsed dc magnetron sputtering technique. Phase analysis shows that as-deposited ITO films belong to crystalline bixbyite structure with (400) preferred orientation. Optical transmittance of greater than 87 % is obtained in the visible range. This is followed by a clear shift in the absorption edge towards higher energy region which is indicative of a lower defect density near the band edge. The lowest resistivity value of 4.47 × 10−4 Ω-cm and the highest carrier concentration of 1 × 1021 cm−3 are achieved by annealing the films at 523 K in air. Variations in the energy band gap and resistivity of ITO films may be attributed to Sn doping and oxygen vacancies, which act as donors. The correlation between the deposition parameters and the film properties are discussed.


In2O3 Pulse Frequency Ionize Impurity Scattering Bixbyite Structure Swanepoel Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Sandeep Kumar Garg, Tanmoy Basu, and S.N. Sarangi for their assistance in this work. One of the authors (RS), gratefully acknowledges the Tamilnadu State Council for Science and Technology (TNSCST), Chennai, Tamilnadu, India for having awarded the Young Scientist Fellowship (YSFS) (Ref.: TNSCST/YSFS/VR/3/2010–2011, dt. 19.01.2011) for the year 2010–2011.


  1. 1.
    C.G. Granqvist, Sol. Energy Mater. Sol. Cells 91, 1529 (2007)CrossRefGoogle Scholar
  2. 2.
    W.S. Jahng, A.H. Francis, H. Moon, J.I. Nanos, M.D. Curtis, Appl. Phys. Lett. 88, 093504 (2006)CrossRefGoogle Scholar
  3. 3.
    I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, 123 (1986)CrossRefGoogle Scholar
  4. 4.
    C.G. Granqvist, A. Hultaker, Thin Solid Films 411, 1 (2002)CrossRefGoogle Scholar
  5. 5.
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003)CrossRefGoogle Scholar
  6. 6.
    K. Jagadeesh Kumar, N. Ravi Chandra Raju, A. Subrahmanyam, Appl. Surf. Sci. 257, 3075 (2011)CrossRefGoogle Scholar
  7. 7.
    H. Han, J.W. Mayer, T.L. Alford, J. Appl. Phys. 99, 123711 (2006)CrossRefGoogle Scholar
  8. 8.
    H. Izumi, F.O. Adurodija, T. Kaneyoshi, T. Ishihara, H. Yoshioka, M. Motoyama, J. Appl. Phys. 91, 1213 (2002)CrossRefGoogle Scholar
  9. 9.
    H. Han, J.W. Mayer, T.L. Alford, J. Appl. Phys. 100, 083715 (2006)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, Q.L. Huang, A.W. Metz, J. Ni, S. Jin, T.J. Marks, M.E. Madsen, A. DiVenere, S.T. Ho, Adv. Mater. 16, 321 (2004)CrossRefGoogle Scholar
  11. 11.
    D.A. Glocker, J. Vac. Sci. Technol. A 11, 2989 (1993)CrossRefGoogle Scholar
  12. 12.
    R.D. Arnell, P.J. Kelly, J.W. Bradley, Surf. Coat. Technol. 188–189, 158 (2004)CrossRefGoogle Scholar
  13. 13.
    E. Nam, Y.-H. Kang, D.-J. Son, D. Jung, S.-J. Hong, Y.S. Kim, Surf. Coat. Technol. 205, S129 (2010)CrossRefGoogle Scholar
  14. 14.
    T. Moriga, T. Okamoto, K. Hiruta, A. Fujiwara, I. Nakabayashi, K. Tominaga, J. Solid State Chem. 155, 312 (2000)CrossRefGoogle Scholar
  15. 15.
    C.S. Moon, J.G. Han, Thin Solid Films 516, 6560 (2008)CrossRefGoogle Scholar
  16. 16.
    W.J. Lee, Y.-K. Fang, J.-J. Ho, C.-Y. Chen, R.-Y. Tsai, D. Huang, F.C. Ho, H.W. Chou, C.C. Chen, J. Electron. Mater. 31, 129 (2002)CrossRefGoogle Scholar
  17. 17.
    W.J. Lee, Y.K. Fang, J.-J. Ho, C.-Y. Chen, S.-F. Chen, R.-Y. Tsai, D. Huang, F.C. Ho, J. Mater. Sci.: Mater. Electron. 13, 751 (2002)Google Scholar
  18. 18.
    JCPDS-International Center for Diffraction Data, Powder Diffraction File No. 06-0416 (ICDD, Newton Square, PA, 2000). -->Google Scholar
  19. 19.
    J.O. Park, J.H. Lee, J.J. Kim, S.H. Cho, Y.K. Cho, Thin Solid Films 474, 127 (2005)CrossRefGoogle Scholar
  20. 20.
    P.K. Song, Y. Shigesato, I. Yasui, C.W. Ow-Yang, D.C. Panie, Jpn. J. Appl. Phys. 37, 1870 (1998)CrossRefGoogle Scholar
  21. 21.
    B.D. Culity, Element of X-ray Diffraction (Philippines, Addison-Wesley), 1978)Google Scholar
  22. 22.
    T. Ungar, Scr. Mater. 51, 777 (2004)CrossRefGoogle Scholar
  23. 23.
    R. Sivakumar, C. Sanjeeviraja, M. Jayachandran, R. Gopalakrishnan, S.N. Sarangi, D. Paramanik, T. Som, J. Phys. Condens. Matter 19, 186204 (2007)CrossRefGoogle Scholar
  24. 24.
    G.B. Williamson, R.C. Smallman, Phil. Mag. 1, 34 (1956)CrossRefGoogle Scholar
  25. 25.
    L. Kerkache, A. Layadi, E. Dogheche, D. Remiens, J. Phys. D Appl. Phys. 39, 184 (2006)CrossRefGoogle Scholar
  26. 26.
    T.J. Tate, M. Garcia-Parajo, M. Green, J. Appl. Phys. 70, 3509 (1991)CrossRefGoogle Scholar
  27. 27.
    J.S.E.M. Svensson, C.G. Granqvist, Appl. Phys. Lett. 45, 828 (1984)CrossRefGoogle Scholar
  28. 28.
    C. Guillen, J. Herrero, J. Appl. Phys. 101, 073514 (2007)CrossRefGoogle Scholar
  29. 29.
    A.K. Kulkarni, S.A. Knickerbocker, J. Vac. Sci. Technol. A 14, 1709 (1996)CrossRefGoogle Scholar
  30. 30.
    W.F. Wu, B.S. Chiou, Appl. Surf. Sci. 68, 497 (1993)CrossRefGoogle Scholar
  31. 31.
    D. Poelman, P.F. Smet, J. Phys. D Appl. Phys. 36, 1850 (2003)CrossRefGoogle Scholar
  32. 32.
    R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  33. 33.
    J.K. Kim, C. Sameer, M.F. Schubert, E.F. Schubert, A.J. Fischer, M.H. Crawford, J. Cho, H. Kim, C. Sone, Adv. Mater. 20, 801 (2008)CrossRefGoogle Scholar
  34. 34.
    R. Das, K. Adhikary, S. Ray, Appl. Surf. Sci. 253, 6068 (2007)CrossRefGoogle Scholar
  35. 35.
    H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999)CrossRefGoogle Scholar
  36. 36.
    H. Kim, J.S. Horwitz, G. Kushto, A. Pique, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, J. Appl. Phys. 88, 6021 (1998)CrossRefGoogle Scholar
  37. 37.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
  38. 38.
    T.S. Moss, Proc. Phys. Soc. London Sect. B 67, 775 (1954)CrossRefGoogle Scholar
  39. 39.
    M. Libra, L. Bardos, Vacuum 38, 455 (1988)CrossRefGoogle Scholar
  40. 40.
    T.S. Sathiaraj, Microelectron. J. 39, 1444 (2008)CrossRefGoogle Scholar
  41. 41.
    A.V. Mudryi, A.V. Ivaniukovich, A.G. Ulyashin, Thin Solid Films 515, 6489 (2007)CrossRefGoogle Scholar
  42. 42.
    H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films (IOP Publishing Ltd., Bristol, 1995)Google Scholar
  43. 43.
    J. Lee, H. Jung, D. Lim, K. Yang, W. Song, J. Li, Thin Solid Films 480–481, 157 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Directorate of Distance EducationAlagappa UniversityKaraikudiIndia
  2. 2.Institute of PhysicsBhubaneswarIndia
  3. 3.Department of PhysicsAlagappa Chettiar College of Engineering and TechnologyKaraikudiIndia

Personalised recommendations