Skip to main content
Log in

Tuning electro-optical properties of pulsed dc magnetron sputtered indium tin oxide thin films: effects of pulsing frequency and annealing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on effects of pulsing frequency and annealing temperature on structural and electro-optical properties of thin indium-tin-oxide (ITO) films prepared by pulsed dc magnetron sputtering technique. Phase analysis shows that as-deposited ITO films belong to crystalline bixbyite structure with (400) preferred orientation. Optical transmittance of greater than 87 % is obtained in the visible range. This is followed by a clear shift in the absorption edge towards higher energy region which is indicative of a lower defect density near the band edge. The lowest resistivity value of 4.47 × 10−4 Ω-cm and the highest carrier concentration of 1 × 1021 cm−3 are achieved by annealing the films at 523 K in air. Variations in the energy band gap and resistivity of ITO films may be attributed to Sn doping and oxygen vacancies, which act as donors. The correlation between the deposition parameters and the film properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.G. Granqvist, Sol. Energy Mater. Sol. Cells 91, 1529 (2007)

    Article  Google Scholar 

  2. W.S. Jahng, A.H. Francis, H. Moon, J.I. Nanos, M.D. Curtis, Appl. Phys. Lett. 88, 093504 (2006)

    Article  Google Scholar 

  3. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, 123 (1986)

    Article  Google Scholar 

  4. C.G. Granqvist, A. Hultaker, Thin Solid Films 411, 1 (2002)

    Article  Google Scholar 

  5. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003)

    Article  Google Scholar 

  6. K. Jagadeesh Kumar, N. Ravi Chandra Raju, A. Subrahmanyam, Appl. Surf. Sci. 257, 3075 (2011)

    Article  Google Scholar 

  7. H. Han, J.W. Mayer, T.L. Alford, J. Appl. Phys. 99, 123711 (2006)

    Article  Google Scholar 

  8. H. Izumi, F.O. Adurodija, T. Kaneyoshi, T. Ishihara, H. Yoshioka, M. Motoyama, J. Appl. Phys. 91, 1213 (2002)

    Article  Google Scholar 

  9. H. Han, J.W. Mayer, T.L. Alford, J. Appl. Phys. 100, 083715 (2006)

    Article  Google Scholar 

  10. Y. Yang, Q.L. Huang, A.W. Metz, J. Ni, S. Jin, T.J. Marks, M.E. Madsen, A. DiVenere, S.T. Ho, Adv. Mater. 16, 321 (2004)

    Article  Google Scholar 

  11. D.A. Glocker, J. Vac. Sci. Technol. A 11, 2989 (1993)

    Article  Google Scholar 

  12. R.D. Arnell, P.J. Kelly, J.W. Bradley, Surf. Coat. Technol. 188–189, 158 (2004)

    Article  Google Scholar 

  13. E. Nam, Y.-H. Kang, D.-J. Son, D. Jung, S.-J. Hong, Y.S. Kim, Surf. Coat. Technol. 205, S129 (2010)

    Article  Google Scholar 

  14. T. Moriga, T. Okamoto, K. Hiruta, A. Fujiwara, I. Nakabayashi, K. Tominaga, J. Solid State Chem. 155, 312 (2000)

    Article  Google Scholar 

  15. C.S. Moon, J.G. Han, Thin Solid Films 516, 6560 (2008)

    Article  Google Scholar 

  16. W.J. Lee, Y.-K. Fang, J.-J. Ho, C.-Y. Chen, R.-Y. Tsai, D. Huang, F.C. Ho, H.W. Chou, C.C. Chen, J. Electron. Mater. 31, 129 (2002)

    Article  Google Scholar 

  17. W.J. Lee, Y.K. Fang, J.-J. Ho, C.-Y. Chen, S.-F. Chen, R.-Y. Tsai, D. Huang, F.C. Ho, J. Mater. Sci.: Mater. Electron. 13, 751 (2002)

    Google Scholar 

  18. JCPDS-International Center for Diffraction Data, Powder Diffraction File No. 06-0416 (ICDD, Newton Square, PA, 2000). -->

  19. J.O. Park, J.H. Lee, J.J. Kim, S.H. Cho, Y.K. Cho, Thin Solid Films 474, 127 (2005)

    Article  Google Scholar 

  20. P.K. Song, Y. Shigesato, I. Yasui, C.W. Ow-Yang, D.C. Panie, Jpn. J. Appl. Phys. 37, 1870 (1998)

    Article  Google Scholar 

  21. B.D. Culity, Element of X-ray Diffraction (Philippines, Addison-Wesley), 1978)

    Google Scholar 

  22. T. Ungar, Scr. Mater. 51, 777 (2004)

    Article  Google Scholar 

  23. R. Sivakumar, C. Sanjeeviraja, M. Jayachandran, R. Gopalakrishnan, S.N. Sarangi, D. Paramanik, T. Som, J. Phys. Condens. Matter 19, 186204 (2007)

    Article  Google Scholar 

  24. G.B. Williamson, R.C. Smallman, Phil. Mag. 1, 34 (1956)

    Article  Google Scholar 

  25. L. Kerkache, A. Layadi, E. Dogheche, D. Remiens, J. Phys. D Appl. Phys. 39, 184 (2006)

    Article  Google Scholar 

  26. T.J. Tate, M. Garcia-Parajo, M. Green, J. Appl. Phys. 70, 3509 (1991)

    Article  Google Scholar 

  27. J.S.E.M. Svensson, C.G. Granqvist, Appl. Phys. Lett. 45, 828 (1984)

    Article  Google Scholar 

  28. C. Guillen, J. Herrero, J. Appl. Phys. 101, 073514 (2007)

    Article  Google Scholar 

  29. A.K. Kulkarni, S.A. Knickerbocker, J. Vac. Sci. Technol. A 14, 1709 (1996)

    Article  Google Scholar 

  30. W.F. Wu, B.S. Chiou, Appl. Surf. Sci. 68, 497 (1993)

    Article  Google Scholar 

  31. D. Poelman, P.F. Smet, J. Phys. D Appl. Phys. 36, 1850 (2003)

    Article  Google Scholar 

  32. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  Google Scholar 

  33. J.K. Kim, C. Sameer, M.F. Schubert, E.F. Schubert, A.J. Fischer, M.H. Crawford, J. Cho, H. Kim, C. Sone, Adv. Mater. 20, 801 (2008)

    Article  Google Scholar 

  34. R. Das, K. Adhikary, S. Ray, Appl. Surf. Sci. 253, 6068 (2007)

    Article  Google Scholar 

  35. H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999)

    Article  Google Scholar 

  36. H. Kim, J.S. Horwitz, G. Kushto, A. Pique, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, J. Appl. Phys. 88, 6021 (1998)

    Article  Google Scholar 

  37. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  38. T.S. Moss, Proc. Phys. Soc. London Sect. B 67, 775 (1954)

    Article  Google Scholar 

  39. M. Libra, L. Bardos, Vacuum 38, 455 (1988)

    Article  Google Scholar 

  40. T.S. Sathiaraj, Microelectron. J. 39, 1444 (2008)

    Article  Google Scholar 

  41. A.V. Mudryi, A.V. Ivaniukovich, A.G. Ulyashin, Thin Solid Films 515, 6489 (2007)

    Article  Google Scholar 

  42. H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films (IOP Publishing Ltd., Bristol, 1995)

    Google Scholar 

  43. J. Lee, H. Jung, D. Lim, K. Yang, W. Song, J. Li, Thin Solid Films 480–481, 157 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sandeep Kumar Garg, Tanmoy Basu, and S.N. Sarangi for their assistance in this work. One of the authors (RS), gratefully acknowledges the Tamilnadu State Council for Science and Technology (TNSCST), Chennai, Tamilnadu, India for having awarded the Young Scientist Fellowship (YSFS) (Ref.: TNSCST/YSFS/VR/3/2010–2011, dt. 19.01.2011) for the year 2010–2011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Sivakumar or T. Som.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, R., Kumar, M., Sanjeeviraja, C. et al. Tuning electro-optical properties of pulsed dc magnetron sputtered indium tin oxide thin films: effects of pulsing frequency and annealing. J Mater Sci: Mater Electron 28, 1409–1418 (2017). https://doi.org/10.1007/s10854-016-5675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5675-y

Keywords

Navigation