Microwave-assisted synthesis and characterization photoluminescence properties: a fast, efficient route to produce ZnO/GrO nanocrystalline

  • Mohammad Mehdi Foroughi
  • Mehdi Ranjbar


Nanostructure materials have attracted much attention in the last few years due to their unique properties that are different from the bulk materials. ZnO/GrO nanoparticles were synthesized with a simple surfactant free microwave route. ZnO nanostructures as an important semiconductor with wide bandgap (3.6 eV) has been widely used for the light emitting diodes, The effects of different parameters such as type of zinc precursor, time and power of irradiation on the morphology and particle size of the samples have been investigated. In this paper we report a simple and rapid microwave method for preparation of ZnO/GrO nanoparticles. Nanostructures were synthesized from reaction between zinc acetate and graphene powder. The effects of different parameters such as power of oven and time of irradiation were also studied. Finally, the efficiency of ZnO/GrO nanostructures as a optical investigation using photoluminescence spectrum irradiation has been evaluated. ZnO/GrO nanostructures were characterized by means of X-ray diffraction, Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared and photoluminescence spectroscopy.


Dynamic Light Scattering Dynamic Light Scattering Zinc Acetate Dynamic Light Scattering Data Zinc Blend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Xuea, W. Yina, P. Zhanga, J. Zhanga, P.T. Ji, S.T. Jia, Colloids Surf. A Physicochem. Eng. Asp. 427, 7 (2013)CrossRefGoogle Scholar
  2. 2.
    Y. Gao, I. Gereige, A.E. Labban, D. Cha, T.T. Isimjan, P.M. Beaujuge, Appl. Mater. Interfaces 6, 2219 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Mertaniemi, V. Jokinen, L. Sainiemi, S. Franssila, A. Marmur, O. Ikkala, R.H.A. Ras, Adv. Mater. 23, 2911 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Xuebo, C. Zhao, L. Xianmei, J. Phys. Chem. C 18, 111 (2007)Google Scholar
  5. 5.
    S.Y. Shao, J. Liu, B.H. Zhang, Z.Y. Xie, L.X. Wang, Appl. Phys. Lett. 98, 2304 (2011)CrossRefGoogle Scholar
  6. 6.
    Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2013)CrossRefGoogle Scholar
  7. 7.
    Z. Zang, M. Wen, W. Chen, Y. Zeng, Z. Zu, X. Zeng, X. Tang, Mater. Des. 84, 418 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Zang, X. Tang, J. Alloys Compd. 619, 98 (2015)CrossRefGoogle Scholar
  9. 9.
    H.W. Zan, C.H. Li, C.C. Yeh, M.Z. Dai, H.F. Meng, Appl. Phys. Lett. 98, 253 (2011)Google Scholar
  10. 10.
    T. Pompe, V. Srikant, D.R. Clarke, Appl. Phys. Lett. 69, 405 (1996)CrossRefGoogle Scholar
  11. 11.
    S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Langmuir 25, 11078 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Mohadesi, M. Ranjbar, S.M. Hosseinpour-Mashkani, Superlattice Microst. 66, 48 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Asadollahzadeh, M. Ranjbar, M.A. Taher, J Indus. Eng. Chem. 20, 4321 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Ranjbar, M.A. Taher, S.M. Hosseinpour-Mashkani, J. Clust. Sci. 24, 959 (2013)CrossRefGoogle Scholar
  15. 15.
    Y.K. Lai, Y.X. Tang, J.J. Gong, D.G. Gong, L.F. Chi, C.J. Lin, Z. Chen, J. Mater. Chem. 22, 7420 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Yang, R. Pelton, C. Abarca, Z. Dai, M. Montgomery, M. Xu, J.A. Bos, Int. J. Miner. Process 123, 137 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Yang, R. Pelton, A. Raegen, M. Montgomery, K. Dalnoki-Veress, Langmuir 27, 10438 (2011)CrossRefGoogle Scholar
  18. 18.
    R. Biroju, P. Giri, S. Dhara, K. Imakita, M. Fuji, ACS Appl. Mater. Interfaces 6, 377 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Janotti, V. Walle, J. Cryst. Growth 287, 58 (2006)CrossRefGoogle Scholar
  20. 20.
    Y. Hong, W. Lee, Y. Wu, T. Ruof, Nano Lett. 12, 1431 (2012)CrossRefGoogle Scholar
  21. 21.
    Y.J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G.C. Yi, C. Liu, Nanotechnology 22, 2456 (2011)Google Scholar
  22. 22.
    M. Trunk, V. Venkatachalapathy, A. Galeckas, AYu. Kuznetsov, Appl. Phys. Lett. 97, 2119 (2010)CrossRefGoogle Scholar
  23. 23.
    D. Siegel, L.G.J. Heeto, J.B. Adams, Phys. Rev. B Condens. Matter 65, 415 (2002)CrossRefGoogle Scholar
  24. 24.
    S.C. Hung, C.W. Chen, C.Y. Shieh, G.C. Chi, R. Fan, Appl. Phys. Lett. 98, 504 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Kerman BranchIslamic Azad UniversityKermanIran

Personalised recommendations