The substrate effect on Ge doped GaN thin films coated by thermionic vacuum arc

  • Soner Özen
  • Şadan Korkmaz
  • Volkan Şenay
  • Suat Pat


This study focuses on characterization and understanding of the substrate effect on Ge doped GaN thin films coated onto transparent substrates. The produced films were deposited onto unheated glass and unheated polyethylene terephthalate by using thermionic vacuum arc technique. Gallium nitride and germanium pellets were used in the thin film production. Reflectance, refractive index and thicknesses of Ge doped GaN thin films were measured by optical interferometer using Cauchy model for fitting. The transmittances were determined in the wavelength range between 200 and 1000 nm by using UV–Vis double beam spectrophotometer. The optical Tauc method was used to determine the band gap energies of produced thin films. Surface morphologies of produced thin films were characterized by atomic force microscopy and also field emission scanning electron microscopy. In conclusion, the substrate effect on the optical and morphological properties of the produced thin films was observed.


Glass Substrate Field Emission Scanning Electron Microscopy Image Gallium Nitride Hydride Vapor Phase Epitaxy Thin Film Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank support by the Scientific Research Projects Commission of Eskişehir Osmangazi University (Project Number: 201619A218).


  1. 1.
    Y. Oshima, T. Yoshida, K. Watanabe, T. Mishima, Properties of Ge-doped, high-quality bulk GaN crystals fabricated by hydride vapor phase epitaxy. J. Cryst. Growth 312, 3569–3573 (2010)CrossRefGoogle Scholar
  2. 2.
    T. Honda, M. Shibata, M. Kurimoto, M. Tsubamoto, J. Yamamoto, H. Kawanishi, Band-gap energy and effective mass of BGaN. Jpn. J. Appl. Phys. 39, 2389 (2000)CrossRefGoogle Scholar
  3. 3.
    L. Teles, L. Scolfaro, J. Leite, J. Furthmüller, F. Bechstedt, Spinodal decomposition in BxGa1−xN and BxAl1−xN alloys. Appl. Phys. Lett. 80, 1177–1179 (2002)CrossRefGoogle Scholar
  4. 4.
    S. Pat, Ş. Korkmaz, S. Özen, V. Şenay, GaN thin film deposition on glass and PET substrates by thermionic vacuum arc (TVA). Mater. Chem. Phys. 159, 1–5 (2015)CrossRefGoogle Scholar
  5. 5.
    D.-W. Kang, J.-Y. Kwon, J. Shim, H.-M. Lee, M.-K. Han, Highly conductive GaN anti-reflection layer at transparent conducting oxide/Si interface for silicon thin film solar cells. Sol. Energy Mater. Sol. C 105, 317–321 (2012)CrossRefGoogle Scholar
  6. 6.
    S.L. Selvaraj, A. Watanabe, T. Egawa, Influence of deep-pits on the device characteristics of metal-organic chemical vapor deposition grown AlGaN/GaN high-electron mobility transistors on silicon substrate. Appl. Phys. Lett. 98, 252105 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Kirste, M.P. Hoffmann, E. Sachet, M. Bobea, Z. Bryan, I. Bryan, C. Nenstiel, A. Hoffmann, J.-P. Maria, R. Collazo, Ge doped GaN with controllable high carrier concentration for plasmonic applications. Appl. Phys. Lett. 103, 242107 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet, C.M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Nakamura, T. Mukai, M. Senoh, Si- and Ge-doped GaN films grown with GaN buffer layers. Jpn. J. Appl. Phys. 31, 2883 (1992)CrossRefGoogle Scholar
  10. 10.
    A. Dadgar, J. Bläsing, A. Diez, A. Krost, Crack-free, highly conducting GaN layers on Si substrates by Ge doping. Appl. Phys. Express 4, 011001 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Fritze, A. Dadgar, H. Witte, M. Bügler, A. Rohrbeck, J. Bläsing, A. Hoffmann, A. Krost, High Si and Ge n-type doping of GaN doping-limits and impact on stress. Appl. Phys. Lett. 100, 122104 (2012)CrossRefGoogle Scholar
  12. 12.
    A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176–4178 (2004)CrossRefGoogle Scholar
  13. 13.
    P. Hageman, W. Schaff, J. Janinski, Z. Liliental-Weber, n-type doping of wurtzite GaN with germanium grown with plasma-assisted molecular beam epitaxy. J. Cryst. Growth 267, 123–128 (2004)CrossRefGoogle Scholar
  14. 14.
    S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Investigation on the morphology and surface free energy of the AlGaN thin film. J. Alloys Compd. 653, 162–167 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, The influence of voltage applied between the electrodes on optical and morphological properties of the InGaN thin films grown by thermionic vacuum arc. Scanning 38, 14–20 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Deposition of a Mo doped GaN thin film on glass substrate by thermionic vacuum arc (TVA). J. Mater. Sci.: Mater. Electron. 26, 5060–5064 (2015)Google Scholar
  17. 17.
    K. Motoki, M. Ueno, Oxygen doping method to gallium nitride single crystal substrate, in, Google Patents, 2014Google Scholar
  18. 18.
    M. Feneberg, K. Lange, C. Lidig, M. Wieneke, H. Witte, J. Bläsing, A. Dadgar, A. Krost, R. Goldhahn, Anisotropy of effective electron masses in highly doped nonpolar GaN. Appl. Phys. Lett. 103, 232104 (2013)CrossRefGoogle Scholar
  19. 19.
    E. Schubert, I. Goepfert, W. Grieshaber, J. Redwing, Optical properties of Si-doped GaN. Appl. Phys. Lett. 71, 921–923 (1997)CrossRefGoogle Scholar
  20. 20.
    P. Tchoulfian, F. Donatini, F. Levy, B. Amstatt, P. Ferret, J. Pernot, High conductivity in Si-doped GaN wires. Appl. Phys. Lett. 102, 122116 (2013)CrossRefGoogle Scholar
  21. 21.
    M.L. Colussi, R.J. Baierle, R.H. Miwa, Doping effects of C, Si and Ge in wurtzite [0001] GaN, AlN, and InN nanowires. J. Appl. Phys. 110, 033709 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Morphological and optical comparison of the Si doped GaN thin film deposited onto the transparent substrates. Mater. Res. Express 3, 045012 (2016)CrossRefGoogle Scholar
  23. 23.
    N. Zographos, A. Erlebach, Process simulation of dopant diffusion and activation in germanium. Phys. Status Solidi (a) 211, 143–146 (2014)CrossRefGoogle Scholar
  24. 24.
    T. Tsukamoto, N. Hirose, A. Kasamatsu, T. Mimura, T. Matsui, Y. Suda, Effects of boron dopants of Si (001) substrates on formation of Ge layers by sputter epitaxy method. Appl. Phys. Lett. 103, 172103 (2013)CrossRefGoogle Scholar
  25. 25.
    H.T. Chen, Y.F. Cheung, H.W. Choi, S.C. Tan, S. Hui, Reduction of thermal resistance and optical power loss using thin-film light-emitting diode (LED) structure. Ind Electron IEEE Trans 62, 6925–6933 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Foglia, L. Bogner, M. Wolf, J. Stähler, Localization-dependent charge separation efficiency at an organic/inorganic hybrid interface. Chem. Phys. Lett. 646, 25–30 (2016)CrossRefGoogle Scholar
  27. 27.
    C. Han, Y. Du, X. Meng, F. Wu, Y. Fang, Enhancement of up-conversion emissions in ZnO: Er3+–Yb3+ after Gd2 O3 surface modification. Appl. Surf. Sci. 274, 60–63 (2013)CrossRefGoogle Scholar
  28. 28.
    J.F. Sánchez-Royo, G. Muñoz-Matutano, M. Brotons-Gisbert, J.P. Martínez-Pastor, A. Segura, A. Cantarero, R. Mata, J. Canet-Ferrer, G. Tobias, E. Canadell, Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 7, 1556–1568 (2014)CrossRefGoogle Scholar
  29. 29.
    J.-H. Yang, L. Shi, L.-W. Wang, S.-H. Wei, Non-radiative carrier recombination enhanced by two-level process: a first-principles study. Sci. Rep. 6, 21712 (2016)CrossRefGoogle Scholar
  30. 30.
    I.-H. Lee, J. Lee, P. Kung, F. Sanchez, M. Razeghi, Band-gap narrowing and potential fluctuation in Si-doped GaN. Appl. Phys. Lett. 74, 102–104 (1999)CrossRefGoogle Scholar
  31. 31.
    M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M.D. Neumann, N. Esser, Band gap renormalization and Burstein–Moss effect in silicon- and germanium-doped wurtzite GaN up to 1020 cm−3. Phys. Rev. B 90, 075203 (2014)CrossRefGoogle Scholar
  32. 32.
    M. Huang, A. Dumon, C.-W. Nan, Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochem. Commun. 21, 62–64 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries. J. Phys. D Appl. Phys. 49, 105303 (2016)CrossRefGoogle Scholar
  34. 34.
    D. Herman, J. Sicha, J. Musil, Magnetron sputtering of TiOxNy films. Vacuum 81, 285–290 (2006)CrossRefGoogle Scholar
  35. 35.
    M. Zhang, P. Bhattacharya, W. Guo, InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 97, 011103 (2010)CrossRefGoogle Scholar
  36. 36.
    I.-K. Park, S.-J. Park, Green gap spectral range light-emitting diodes with self-assembled InGaN quantum dots formed by enhanced phase separation. Appl. Phys. Express 4, 042102 (2011)CrossRefGoogle Scholar
  37. 37.
    J. Brown, F. Wu, P. Petroff, J. Speck, GaN quantum dot density control by rf-plasma molecular beam epitaxy. Appl. Phys. Lett. 84, 690–692 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Soner Özen
    • 1
  • Şadan Korkmaz
    • 1
  • Volkan Şenay
    • 2
  • Suat Pat
    • 1
  1. 1.Department of PhysicsEskişehir Osmangazi UniversityEskisehirTurkey
  2. 2.Primary Science Education DepartmentBayburt UniversityBayburtTurkey

Personalised recommendations