Advertisement

Efficient visible-light driven photocatalysts: coupling TiO2(AB) nanotubes with g-C3N4 nanoflakes

  • Wenwen Wang
  • Dongjiang Yang
  • Weiyou Yang
  • Jin Sun
  • Huilin Hou
Article

Abstract

The wide application of the titanium dioxide (TiO2) as the photocatalysts is greatly hindered by its intrinsic large band gap and usually fast electron–hole recombination. Here, we reported the exploration of coupling g-C3N4 nanoflakes to TiO2 nanotubes with the anatase and TiO2(B) mixed phases (TiO2(AB)) toward the efficient visible-light-driven hybrid photocatalyst. It is found that coupling TiO2(AB) nanotubes with g-C3N4 nanoflakes could bring a profoundly extension the visible light adsorption capacity and enhanced photogenerated carrier separation. Accordingly, they exhibit much higher efficient photocatalytic activities toward the degradation of sulforhodamine B under the visible light irradiation, which is enhanced for nearly 15 times to those of the TiO2(AB) and g-C3N4, suggesting their promising practical applications as novel and efficient semiconductor photocatalysts for the water purification.

Keywords

TiO2 Photocatalytic Activity Visible Light Irradiation Photocatalytic Performance Photogenerated Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC, Grant Nos. 51372123 and 51572133 and Natural Science Foundation of Ningbo Municipal Government (Grant No. 2016A610102).

References

  1. 1.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  2. 2.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269–271 (2001)CrossRefGoogle Scholar
  3. 3.
    D. Yang, H. Liu, Z. Zheng, Y. Yuan, J.C. Zhao, E.R. Waclawik, X. Ke, H. Zhu, J. Am. Chem. Soc. 131, 17885–17893 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  5. 5.
    A.L. Linsebigler, G. Lu, J.T. Yates Jr., Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  6. 6.
    H. Hou, L. Wang, F. Gao, G. Wei, J. Zheng, B. Tang, W. Yang, RSC Adv. 4, 19939–19944 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Li, J. Zhou, X. Zhang, K. Zhou, S. Qu, J. Wang, B. Feng, J. Mater. Sci.: Mater. Electron. 26, 2571–2578 (2015)Google Scholar
  8. 8.
    H.M. Yadav, T.V. Kolekar, A.S. Barge, N.D. Thorat, S.D. Delekar, B.M. Kim, J.S. Kim, J. Mater. Sci.: Mater. Electron. 27, 526–534 (2016)Google Scholar
  9. 9.
    L. Zhang, D. Jing, X. She, H. Liu, D. Yang, Y. Lu, J. Li, Z. Zheng, L. Guo, J. Mater. Chem. A 2, 2071–2078 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Hirakawa, P.V. Kamat, J. Am. Chem. Soc. 127, 3928–3934 (2005)CrossRefGoogle Scholar
  11. 11.
    V.M. Daskalaki, M. Antoniadou, G. Li Puma, D.I. Kondarides, P. Lianos, Environ. Sci. Technol. 44, 7200–7205 (2010)CrossRefGoogle Scholar
  12. 12.
    C. Di Valentin, G. Pacchioni, A. Selloni, Phys. Rev. B 70, 085116 (2004)CrossRefGoogle Scholar
  13. 13.
    K.J.A. Raj, B. Viswanathan, Indian J. Chem. A 48, 1378 (2009)Google Scholar
  14. 14.
    H. Hou, M. Shang, L. Wang, W. Li, B. Tang, W. Yang, Sci. Rep. 5, 15228 (2015)CrossRefGoogle Scholar
  15. 15.
    J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, M.H. Hon, J. Phys. Chem. B 109, 13056–13059 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Yan, Z. Li, Z. Zou, Langmuir 26, 3894–3901 (2010)CrossRefGoogle Scholar
  17. 17.
    X.H. Li, J.S. Chen, X. Wang, J. Sun, M. Antonietti, JACS 2011(133), 8074–8077 (2011)CrossRefGoogle Scholar
  18. 18.
    X. Bai, L. Wang, R. Zong, Y. Zhu, J. Phys. Chem. C 117, 9952–9961 (2013)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, Q. Zhang, H. Jiu, G. He, J. Mater. Sci.: Mater. Electron. 27, 7311–7317 (2016)Google Scholar
  20. 20.
    Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, ACS Appl. Mater. Interfaces 6, 14405–14414 (2014)CrossRefGoogle Scholar
  21. 21.
    X.J. Wang, W.Y. Yang, F.T. Li, Y.B. Xue, R.H. Liu, Y. Hao, Ind. Eng. Chem. Res. 52, 17140–17150 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Yu, H. Yu, B. Cheng, X. Zhao, Q. Zhang, J. Photochem. Photobiol. A Chem. 182, 121–127 (2006)CrossRefGoogle Scholar
  23. 23.
    G. Li, S. Ciston, Z.V. Saponjic, L. Chen, N.M. Dimitrijevic, T. Rajh, K.A. Gray, J. Catal. 253, 105–110 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Lan, X. Gao, H. Zhu, Z. Zheng, T. Yan, F. Wu, S.P. Ringer, D. Song, Adv. Funct. Mater. 15, 1310–1318 (2005)CrossRefGoogle Scholar
  25. 25.
    S. Yan, Z. Li, Z. Zou, Langmuir 25, 10397–10401 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Paulose, G.K. Mor, O.K. Varghese, K. Shankar, C.A. Grimes, J. Photochem. Photobiol. A Chem. 178, 8–15 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Catal. Commun. 13, 63–68 (2011)CrossRefGoogle Scholar
  28. 28.
    C.L. Yang, D.S. Pan, R. Somoano, J. Appl. Phys. 65, 3253–3258 (1989)CrossRefGoogle Scholar
  29. 29.
    L. Gu, V. Srot, W. Sigle, C. Koch, P. van Aken, F. Scholz, S.B. Thapa, C. Kirchner, M. Jetter, M. Rühle, Phys. Rev. B 75, 195214 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Zhan, D. Chen, X. Jiao, C. Tao, J. Phys. Chem. B 110, 11199–11204 (2006)CrossRefGoogle Scholar
  31. 31.
    W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, J. Am. Chem. Soc. 2004(126), 4782–4783 (2004)CrossRefGoogle Scholar
  32. 32.
    T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B 102, 5845–5851 (1998)CrossRefGoogle Scholar
  33. 33.
    M. Sun, G. Chen, Y. Zhang, Q. Wei, Z. Ma, B. Du, Ind. Eng. Chem. Res. 51, 2897–2903 (2012)CrossRefGoogle Scholar
  34. 34.
    Z. Khan, T.R. Chetia, A.K. Vardhaman, D. Barpuzary, C.V. Sastri, M. Qureshi, RSC Adv. 2, 12122–12128 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of MaterialsNingbo University of TechnologyNingboPeople’s Republic of China
  2. 2.College of Chemistry, Chemical and Environmental Engineering, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key LaboratoryQingdao UniversityQingdaoPeople’s Republic of China

Personalised recommendations