Advertisement

Reaction pathway for synthesis of Cu2ZnSn(S/Se)4 via mechano-chemical route and annealing studies

  • Devendra Pareek
  • K. R. Balasubramaniam
  • Pratibha Sharma
Article

Abstract

Reaction pathway for the formation of kesterite Cu2ZnSn(S/Se)4 (CZTS/Se) from elemental precursors (Cu, Zn, Sn, S/Se) has been investigated experimentally and is being reported in the current paper. To identify the various stages of reaction pathway and to identify the formation and consumption of secondary phases, X-ray diffraction and Raman spectroscopy tools were employed. A series of experiments for different ballmilling durations (5, 10, 15, 20, 25 and 30 h) were performed and the presence of different phases was recorded for each experiment. In addition to XRD and Raman studies, phase formation has also been confirmed using detailed XPS, TEM and SEM–EDS analysis. In addition, the effect of annealing temperature on composition and band gap of the CZTS/Se material has been discussed. Optical band gap of various samples of CZTS was observed in the range of 1.40–1.60 eV and that of CZTSe was observed in the range of 1.08–1.18 eV. The relatively simple, low cost, easily scalable mechanical alloying process along with understanding of reaction pathway will provide a future scope for bulk production of CZTS/Se absorber material for thin film solar cells.

Keywords

ZnSe Reaction Pathway LiFePO4 Binary Phasis CuSn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Sophisticated Analytical Instrument Facility (SAIF) at IIT Bombay for providing the access to the facilities of FEG-TEM and FEG-SEM. Author P.S. would like to acknowledge the IITB-ISRO space technology cell at IITBombay for funding the research work through Grant 15ISROC002. KRB would like to thank IRCC, IIT Bombay for partial funding for this project through the Grant 12IRCCSG014.

References

  1. 1.
    K. Ito, T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988)CrossRefGoogle Scholar
  2. 2.
    J. Seol, S. Lee, J. Lee, H. Nam, K. Kim, Sol. Energy Mater. Sol. Cells 75, 155 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Zhang, L. Shao, Y. Fu, E. Xie, Rare Met. 25, 315 (2006)CrossRefGoogle Scholar
  4. 4.
    K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi, H. Katagiri, Thin Solid Films 515, 5997 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express 1, 041201 (2008)CrossRefGoogle Scholar
  6. 6.
    N. Momose, M.T. Htay, T. Yudasaka, S. Igarashi, T. Seki, S. Iwano, Y. Hashimoto, K. Ito, Jpn. J. Appl. Phys. 50, 01BG091 (2011)CrossRefGoogle Scholar
  7. 7.
    C. Platzer-Björkman, J. Scragg, H. Flammersberger, T. Kubart, M. Edoff, Sol. Energy Mater. Sol. Cells 98, 110 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Kemell, M. Ritala, M. Leskelä, Crit. Rev. Solid State Mater. Sci. 30, 1 (2005)CrossRefGoogle Scholar
  9. 9.
    T.M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, H.-W. Schock, in Proceedings of 14th European Photovoltaic Solar Energy Conference (1997), pp. 1242–1245Google Scholar
  10. 10.
    H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells 49, 407 (1997)CrossRefGoogle Scholar
  11. 11.
    H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Sol. Energy Mater. Sol. Cells 65, 141 (2001)CrossRefGoogle Scholar
  12. 12.
    H. Katagiri, N. Ishigaki, K. Hironori, I. Naoya, I. Takeshi, Jpn. J. Appl. Phys. 40, 500 (2001)CrossRefGoogle Scholar
  13. 13.
    T. M. Friedlmeier, H. Dittrich, and H.W. Schock, in 11th Conference Ternary Multinary Compounds ICTMC-11, Salford, 8–12 September 1997 (1998), pp. 345–348Google Scholar
  14. 14.
    S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, J.H. Yun, Appl. Phys. Lett. 97, 021905 (2010)CrossRefGoogle Scholar
  15. 15.
    T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, Phys. Status Solidi 3, 2844 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kötschau, S. Schorr, H.W. Schock, Thin Solid Films 517, 2524 (2009)CrossRefGoogle Scholar
  17. 17.
    B. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H. Schock, Prog. Photovolt. Res. Appl. 19, 93 (2011)CrossRefGoogle Scholar
  18. 18.
    T. Tanaka, A. Yoshida, D. Saiki, K. Saito, Q. Guo, M. Nishio, T. Yamaguchi, Thin Solid Films 518, S29 (2010)CrossRefGoogle Scholar
  19. 19.
    K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, S. Guha, Appl. Phys. Lett. 97, 143508 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt. Res. Appl. 21, 72 (2013)CrossRefGoogle Scholar
  21. 21.
    K. Sekiguchi, K. Tanaka, K. Moriya, H. Uchiki, Phys. Status Solidi 3, 2618 (2006)CrossRefGoogle Scholar
  22. 22.
    S.M. Pawar, A.V. Moholkar, I.K. Kim, S.W. Shin, J.H. Moon, J.I. Rhee, J.H. Kim, Curr. Appl. Phys. 10, 565 (2010)CrossRefGoogle Scholar
  23. 23.
    L. Sun, J. He, Y. Chen, F. Yue, P. Yang, J. Chu, J. Cryst. Growth 361, 147 (2012)CrossRefGoogle Scholar
  24. 24.
    A.V. Moholkar, S.S. Shinde, A.R. Babar, K.-U. Sim, Y. Kwon, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, Sol. Energy 85, 1354 (2011)CrossRefGoogle Scholar
  25. 25.
    A.V. Moholkar, S.S. Shinde, G.L. Agawane, S.H. Jo, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, J. Alloys Compd. 544, 145 (2012)CrossRefGoogle Scholar
  26. 26.
    G.D. Surgina, A.V. Zenkevich, I.P. Sipaylo, V.N. Nevolin, W. Drube, P.E. Teterin, M.N. Minnekaev, Thin Solid Films 535, 44 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Taunier, J. Sicx-Kurdi, P.P. Grand, A. Chomont, O. Ramdani, L. Parissi, P. Panheleux, N. Naghavi, C. Hubert, M. Ben-Farah, J.P. Fauvarque, J. Connolly, O. Roussel, P. Mogensen, E. Mahé, J.F. Guillemoles, D. Lincot, O. Kerrec, Thin Solid Films 480–481, 526 (2005)CrossRefGoogle Scholar
  28. 28.
    D.R. Johnson, Thin Solid Films 361–362, 321 (2000)CrossRefGoogle Scholar
  29. 29.
    J.J. Scragg, P.J. Dale, L.M. Peter, Electrochem. Commun. 10, 639 (2008)CrossRefGoogle Scholar
  30. 30.
    J.J. Scragg, P.J. Dale, L.M. Peter, Thin Solid Films 517, 2481 (2009)CrossRefGoogle Scholar
  31. 31.
    J.J. Scragg, D.M. Berg, P.J. Dale, J. Electroanal. Chem. 646, 52 (2010)CrossRefGoogle Scholar
  32. 32.
    J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, Phys. Status Solidi 245, 1772 (2008)CrossRefGoogle Scholar
  33. 33.
    A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, Thin Solid Films 517, 2511 (2009)CrossRefGoogle Scholar
  34. 34.
    X. Zhang, X. Shi, W. Ye, C. Ma, C. Wang, Appl. Phys. A Mater. Sci. Process. 94, 381 (2009)CrossRefGoogle Scholar
  35. 35.
    S. Ahmed, K.B.K. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, Adv. Energy Mater. 2, 253 (2012)CrossRefGoogle Scholar
  36. 36.
    K. Tanaka, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 91, 1199 (2007)CrossRefGoogle Scholar
  37. 37.
    K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009)CrossRefGoogle Scholar
  38. 38.
    N. Moritake, Y. Fukui, M. Oonuki, K. Tanaka, H. Uchiki, Phys. Status Solidi 6, 1233 (2009)CrossRefGoogle Scholar
  39. 39.
    T. Todorov, M. Kita, J. Carda, P. Escribano, Thin Solid Films 517, 2541 (2009)CrossRefGoogle Scholar
  40. 40.
    C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, J. Am. Chem. Soc. 131, 12554 (2009)CrossRefGoogle Scholar
  41. 41.
    P. Dai, X. Shen, Z. Lin, Z. Feng, H. Xu, J. Zhan, Chem. Commun. (Camb.) 46, 5749 (2010)CrossRefGoogle Scholar
  42. 42.
    Y. Wang, H. Gong, J. Alloys Compd. 509, 9627 (2011)CrossRefGoogle Scholar
  43. 43.
    Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Sol. Energy Mater. Sol. Cells 94, 2042 (2010)CrossRefGoogle Scholar
  44. 44.
    R. Saravana Kumar, B.D. Ryu, S. Chandramohan, J.K. Seol, S.-K. Lee, C.-H. Hong, Mater. Lett. 86, 174 (2012)CrossRefGoogle Scholar
  45. 45.
    N. Nakayama, K. Ito, Appl. Surf. Sci. 92, 171 (1996)CrossRefGoogle Scholar
  46. 46.
    N. Kamoun, H. Bouzouita, B. Rezig, Thin Solid Films 515, 5949 (2007)CrossRefGoogle Scholar
  47. 47.
    Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Sol. Energy Mater. Sol. Cells 93, 1230 (2009)CrossRefGoogle Scholar
  48. 48.
    Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Phys. Status Solidi 206, 1525 (2009)CrossRefGoogle Scholar
  49. 49.
    T. Prabhakar, J. Nagaraju, in 35th IEEE Photovoltaic Specialists Conference (2010), pp. 1964–1969Google Scholar
  50. 50.
    D. Pareek, K.R. Balasubramaniam, P. Sharma, Mater. Charact. 103, 42 (2015)CrossRefGoogle Scholar
  51. 51.
    Q.M. Chen, Z.Q. Li, Y. Ni, S.Y. Cheng, X.M. Dou, Chin. Phys. B 21, 038401 (2012)CrossRefGoogle Scholar
  52. 52.
    Q.M. Chen, X.M. Dou, Z.Q. Li, S.Y. Cheng, S.L. Zhuang, Adv. Mater. Res. 335–336, 1406 (2011)Google Scholar
  53. 53.
    B. Pani, U.P. Singh, J. Renew. Sustain. Energy 5, 0531311 (2013)CrossRefGoogle Scholar
  54. 54.
    G. Brammertz, M. Buffière, S. Oueslati, H. Elanzeery, K. Ben Messaoud, S. Sahayaraj, C. Köble, M. Meuris, J. Poortmans, Appl. Phys. Lett. 103, 163904 (2013)CrossRefGoogle Scholar
  55. 55.
    T.K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22, E156 (2010)CrossRefGoogle Scholar
  56. 56.
    D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Prog. Photovolt. Res. Appl. 20, 6 (2012)CrossRefGoogle Scholar
  57. 57.
    T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 3, 34 (2013)CrossRefGoogle Scholar
  58. 58.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  59. 59.
    A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Science 352, aad4424 (2016)CrossRefGoogle Scholar
  60. 60.
    S. Schorr, A. Weber, V. Honkimäki, H.W. Schock, Thin Solid Films 517, 2461 (2009)CrossRefGoogle Scholar
  61. 61.
    I.D. Olekseyuk, I.V. Dudchak, L.V. Piskach, J. Alloys Compd. 368, 135 (2004)CrossRefGoogle Scholar
  62. 62.
    A. Weber, R. Mainz, H.W. Schock, J. Appl. Phys. 107, 013516 (2010)CrossRefGoogle Scholar
  63. 63.
    L. Takacs, Prog. Mater Sci. 47, 355 (2002)CrossRefGoogle Scholar
  64. 64.
    C.P. Liu, C.L. Chuang, Powder Technol. 229, 78 (2012)CrossRefGoogle Scholar
  65. 65.
    L. Zaluski, A. Zaluska, J. Ström-Olsen, J. Alloys Compd. 290, 71 (1999)CrossRefGoogle Scholar
  66. 66.
    H.C. Kang, D.K. Jun, B. Jin, E.M. Jin, K.H. Park, H.B. Gu, K.W. Kim, J. Power Sources 179, 340 (2008)CrossRefGoogle Scholar
  67. 67.
    T.S. Shyju, S. Anandhi, R. Suriakarthick, R. Gopalakrishnan, P. Kuppusami, J. Solid State Chem. 227, 165 (2015)CrossRefGoogle Scholar
  68. 68.
    C.E.M. Campos, K. Ersching, J.C. de Lima, T.A. Grandi, H. Höhn, P.S. Pizani, J. Alloys Compd. 466, 80 (2008)CrossRefGoogle Scholar
  69. 69.
    D. Pareek, K.R. Balasubramaniam, P. Sharma, RSC Adv. 6, 68754 (2016)CrossRefGoogle Scholar
  70. 70.
    S. Mehdaoui, N. Benslim, O. Aissaoui, M. Benabdeslem, L. Bechiri, A. Otmani, X. Portier, G. Nouet, Mater. Charact. 60, 451 (2009)CrossRefGoogle Scholar
  71. 71.
    C. Dun, N.A.W. Holzwarth, Y. Li, W. Huang, D.L. Carroll, J. Appl. Phys. 115, 1935131 (2014)CrossRefGoogle Scholar
  72. 72.
    S.V. Baryshev, E. Thimsen, Chem. Mater. 27, 2294 (2015)CrossRefGoogle Scholar
  73. 73.
    X. Fontane, V. Izquierdo-Roca, A. Fairbrother, M. Espindola-Rodriguez, S. Lopez-Marino, M. Placidi, T. Jawhari, E. Saucedo, A. Perez-Rodriguez, in 2013 IEEE 39th Photovoltaic Specialists Conference (IEEE), (2013), pp. 2581–2584Google Scholar
  74. 74.
    S.C. Riha, B.A. Parkinson, A.L. Prieto, J. Am. Chem. Soc. 131, 12054 (2009)CrossRefGoogle Scholar
  75. 75.
    C. Calderón, G. Gordillo, R. Becerra, P. Bartolo-Pérez, Mater. Sci. Semicond. Process. 39, 492 (2015)CrossRefGoogle Scholar
  76. 76.
    J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, C.-S. Lee, J. Phys. Chem. C 116, 19718 (2012)CrossRefGoogle Scholar
  77. 77.
    G. Gordillo, C. Calderon, P. Bartolo-Perez, Appl. Surf. Sci. 305, 506 (2014)CrossRefGoogle Scholar
  78. 78.
    S. Das, K.C. Mandal, Jpn. J. Appl. Phys. 52, 125502 (2013). doi: 10.7567/JJAP.52.125502
  79. 79.
    L. Zhang, C.M.B. Holt, E.J. Luber, B.C. Olsen, H. Wang, M. Danaie, X. Cui, X. Tan, V.W. Lui, W.P. Kalisvaart, D. Mitlin, J. Phys. Chem. C 115, 24381 (2011)CrossRefGoogle Scholar
  80. 80.
    Y. Xia, Z. Chen, Z. Zhang, X. Fang, G. Liang, Nanoscale Res. Lett. 9, 208 (2014)CrossRefGoogle Scholar
  81. 81.
    X. Zhai, H. Jia, Y. Zhang, Y. Lei, J. Wei, Y. Gao, J. Chu, W. He, J. Yin, Z. Zheng, CrystEngComm 16, 6244 (2014)CrossRefGoogle Scholar
  82. 82.
    K.U. Isah, J.A. Yabagi, U. Ahmadu, M. Isah, M. Gaetan, Z. Kana, A.A. Oberafo, ISOR J. Appl. Phys. 2, 14 (2013)Google Scholar
  83. 83.
    W. Xie, X. Jiang, C. Zou, D. Li, J. Zhang, J. Quan, L. Shao, Phys. E Low Dimens. Syst. Nanostruct. 45, 16 (2012)CrossRefGoogle Scholar
  84. 84.
    K. Liu, N. Ji, L. Shi, H. Liu, J. Nanomater. 2014, 1 (2014)Google Scholar
  85. 85.
    T. Rath, W. Haas, A. Pein, R. Saf, E. Maier, B. Kunert, F. Hofer, R. Resel, G. Trimmel, Sol. Energy Mater. Sol. Cells 101, 87 (2012)CrossRefGoogle Scholar
  86. 86.
    P. Scherrer, G. Nachrichten, Math. Phys. 2, 98 (1918)Google Scholar
  87. 87.
    V. Kheraj, K.K. Patel, S.J. Patel, D.V. Shah, J. Cryst. Growth 362, 174 (2013)CrossRefGoogle Scholar
  88. 88.
    M.D. Regulacio, C. Ye, S.H. Lim, M. Bosman, E. Ye, S. Chen, Q.-H. Xu, M.-Y. Han, Chem. A Eur. J. 18, 3127 (2012)CrossRefGoogle Scholar
  89. 89.
    X. Lin, J. Kavalakkatt, K. Kornhuber, S. Levcenko, M.C. Lux-Steiner, A. Ennaoui, Thin Solid Films 535, 10 (2013)CrossRefGoogle Scholar
  90. 90.
    J.I. Pankove, Optical Processes in Semiconductors (Devor Publications, New York, 1975)Google Scholar
  91. 91.
    J. Wang, X. Xin, Z. Lin, Nanoscale 3, 3040 (2011)CrossRefGoogle Scholar
  92. 92.
    S. Chen, X.G. Gong, A. Walsh, S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009)CrossRefGoogle Scholar
  93. 93.
    S. Schorr, H.J. Hoebler, M. Tovar, Eur. J. Mineral. 19, 65 (2007)CrossRefGoogle Scholar
  94. 94.
    S. Schorr, Thin Solid Films 515, 5985 (2007)CrossRefGoogle Scholar
  95. 95.
    S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.-H. Wei, Phys. Rev. B 81, 245204 (2010)CrossRefGoogle Scholar
  96. 96.
    M. Grossberg, J. Krustok, J. Raudoja, T. Raadik, Appl. Phys. Lett. 101, 102102 (2012)CrossRefGoogle Scholar
  97. 97.
    C. Malerba, F. Biccari, C. Leonor, A. Ricardo, J. Alloys Compd. 582, 528 (2014)CrossRefGoogle Scholar
  98. 98.
    C.P. Chan, Z. Chen, H. Lam, C. Surya, in Proceedings of SPIE (2009), pp. 7411081–7411089Google Scholar
  99. 99.
    F. Biccari, R. Chierchia, M. Valentini, P. Mangiapane, E. Salza, C. Malerba, C.L.A. Ricardo, L. Mannarino, P. Scardi, A. Mittiga, Energy Procedia 10, 187 (2011)CrossRefGoogle Scholar
  100. 100.
    Y. Li, Q. Han, T.W. Kim, W. Shi, Nanoscale 6, 3777 (2014)CrossRefGoogle Scholar
  101. 101.
    B.D. Chernomordik, A.E. Béland, N.D. Trejo, A.A. Gunawan, D.D. Deng, K.A. Mkhoyan, E.S. Aydil, J. Mater. Chem. A 2, 10389 (2014)CrossRefGoogle Scholar
  102. 102.
    M.I. Amal, S.H. Lee, K.H. Kim, Curr. Appl. Phys. 14, 916 (2014)CrossRefGoogle Scholar
  103. 103.
    K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh, J.Y. Kim, J. Moon, Sci. Rep. 3, 3069 (2013)CrossRefGoogle Scholar
  104. 104.
    C. Shi, G. Shi, Z. Chen, P. Yang, M. Yao, Mater. Lett. 73, 89 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Devendra Pareek
    • 1
  • K. R. Balasubramaniam
    • 1
  • Pratibha Sharma
    • 1
  1. 1.Department of Energy Science and EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations