Advertisement

Green synthesis of magnetic and photo-catalyst PbFe12O19−PbS nanocomposites by lemon extract: nano-sphere PbFe12O19 and star-like PbS

  • Nakisa Asiabani
  • Gholamreza Nabiyouni
  • Shahab Khaghani
  • Davood Ghanbari
Article

Abstract

Mono-disperse PbFe12O19 nano-spheres were synthesized via a green hydrothermal method in the presence of lemon extract. Then star-like PbS and PbFe12O19−PbS nanocomposites were synthesized by hydrothermal method. The prepared products were characterized by X-ray diffraction pattern, scanning electron microscopy, and Fourier transform infrared spectroscopy. Vibrating sample magnetometer illustrated that PbFe12O19 nanoparticles have either ferromagnetic or super-paramagnetic behaviour. The photo catalytic behaviour of PbFe12O19−PbS nanocomposites was evaluated using the degradation of three various azo dyes under ultraviolet light irradiation. The results show that nanocomposites have applicable magnetic and photo catalytic performance.

Keywords

Ferrite Hydrothermal Method Thioglycolic Acid Lead Sulfide Lemon Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Nabiyouni, A. Ahmadi, D. Ghanbari, H. Halakouie, J. Mater. Sci.: Mater. Electron. 27, 4297 (2016)Google Scholar
  2. 2.
    H. Halakouie, G. Nabiyouni, J. Saffari, A. Ahmadi, D. Ghanbari, J. Mater. Sci.: Mater. Electron. 27, 7738 (2016)Google Scholar
  3. 3.
    C. Reitz, C. Suchomski, J. Haetge, T. Leichtweiss, Z. Jaglicic, I. Djerdjc, T. Brezesinski, Chem. Commun. 48, 4471–4473 (2012)CrossRefGoogle Scholar
  4. 4.
    G. Nabiyouni, D. Ghanbari, A. Yousofnejad, M. Seraj, Z. Mirdamadian, JNS 3, 155–160 (2013)Google Scholar
  5. 5.
    A. Bagheri Ghomi, V. Ashayeri, Iran. J. Catal. 3, 135–140 (2012)Google Scholar
  6. 6.
    M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismaild, E.A. Abdel-Aal, Adv. Powder Technol. 23, 315–323 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Feng, A. Yang, X. Zuo, C. Vittoria, V.G. Harris, J. Appl. Phys. 107, 09A521 (2010)CrossRefGoogle Scholar
  8. 8.
    G. Ravi Kumar, K.V. Kumar, Y.C. Venudhar, Mater. Sci. Appl. 3, 87–91 (2012)Google Scholar
  9. 9.
    L. Jaswal, S. Verma, A. Lagwal, B. Singh, Inter. J. Adv. Res. Technol. 3, 2278–7763 (2014)Google Scholar
  10. 10.
    M.R. Uddin, M.R. Khan, M.W. Rahman, A. Yousuf, C.K. Cheng, React. Kinet. Mech. Cat. 116, 589 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Goyal, S. Bansal, S. Singhal, Inter. J. Hydrog. Energy 39, 4895–4908 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Yang, J. Yan, Z. Lu, X. Chenga, Y. Tanga, J. Alloys Compd. 476, 715–719 (2009)CrossRefGoogle Scholar
  13. 13.
    M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, Mater. Res. Bull. 48, 1439–1446 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Singh, B.C. Yadav, V.D. Gupta, P.K. Dwivedi, Mater. Res. 47, 3538–3547 (2012)Google Scholar
  15. 15.
    H. Kojima, in Ferromagnetic Materials, vol. 3, ed. by E.P. Wohlfarth (NorthHolland, New York, 1982), p. 305Google Scholar
  16. 16.
    E. Lacroix, P. Gerard, G. Marest, M. Dupuy, J. Appl. Phys. 69, 4770 (1991)CrossRefGoogle Scholar
  17. 17.
    I. Zaquine, H. Benazizi, J.C. Mage, J. Appl. Phys. 64, 5822 (1988)CrossRefGoogle Scholar
  18. 18.
    M. Matsuoka, M. Naoe, J. Appl. Phys. 57, 4040 (1985)CrossRefGoogle Scholar
  19. 19.
    O. Ogasawara, M.A.S. Oliveira, J. Magn. Magn. Mater. 147, 217 (2000)Google Scholar
  20. 20.
    R. Martinez Garcia, E. Reguera Ruiz, E. Estevez Rams, Mater. Lett. 50, 183 (2001)CrossRefGoogle Scholar
  21. 21.
    S. Che, J. Wang, Q.-W. Chen, J. Phys.: Condens. Matter 15, L335 (2003)Google Scholar
  22. 22.
    Y.K. Hong, H.S. Jung, J. Appl. Phys. 85, 5549 (1999)CrossRefGoogle Scholar
  23. 23.
    O. Heczko, R. Gerber, Z. Simsa, Thin Solid Films 358, 206 (2000)CrossRefGoogle Scholar
  24. 24.
    A. Rezaei, G. Nabiyouni, D. Ghanbari, J. Mater. Sci.: Mater. Electron. (2016). doi: 10.1007/s10854-016-5258-y Google Scholar
  25. 25.
    D. Ghanbari, S. Sharifi, A. Naraghi, G. Nabiyouni, J. Mater. Sci.: Mater. Electron. 27, 5315 (2016)Google Scholar
  26. 26.
    A. Shabani, G. Nabiyouni, J. Saffari, D. Ghanbari, J. Mater. Sci.: Mater. Electron. 27, 8661 (2016)Google Scholar
  27. 27.
    J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, M.R. Hosseini-Tabatabaei, J. Mater. Sci.: Mater. Electron. 26, 9591 (2015)Google Scholar
  28. 28.
    S. Masoumi, G. Nabiyouni, D. Ghanbari, J. Mater. Sci.: Mater. Electron. 27, 9962 (2016)Google Scholar
  29. 29.
    S. Masoumi, G. Nabiyouni, D. Ghanbari, J. Mater. Sci.: Mater. Electron. (2016). doi: 10.1007/s10854-016-5218-6 Google Scholar
  30. 30.
    M. Masjedi-Arani, M. Salavati-Niasari, Mater. Lett. 174, 71–74 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Masjedi-Arani, M. Salavati-Niasari, Ultrason. Sonochem. 29, 226–235 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Masjedi-Arani, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 2316–2322 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nakisa Asiabani
    • 1
  • Gholamreza Nabiyouni
    • 1
  • Shahab Khaghani
    • 2
  • Davood Ghanbari
    • 3
  1. 1.Department of Physics, Faculty of ScienceArak UniversityArakIran
  2. 2.Department of Agronomy and Plant Breeding, Arak BranchIslamic Azad UniversityArakIran
  3. 3.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations