Advertisement

Phase tuning in lanthanum doped lead zirconate titanate near morphotropic phase boundary using chemical co-precipitation route and their dielectric properties

  • Prashant S. Janrao
  • V. L. Mathe
Article
  • 150 Downloads

Abstract

Lanthanum doped PZT namely Pb1−xLaxZr0.6Ti0.4O3 x = 0.06, 0.07 and 0.08 (PLZT) were prepared by chemical co-precipitation method. The X-ray diffraction analysis confirms the tetragonal phase formation for all the compositions of PLZT ferroelectrics whereas x = 0.07 composition show co-existence of tetragonal and rhombohedral phase. From SEM morphology results it is seen that the as doping concentration of La increases the average grain size also increases. Maximum value of dielectric constant obtained for x = 0.07 composition supplements co-existence of tetragonal and rhombohedral phase. Dielectric result shows the phase transformation from ferroelectric to paraelectric at transition temperature (Tc). As frequency increases the dielectric constant decreases. Raman spectroscopic analysis has also been carried out to support phase tunability in the samples under investigation. The highest value of saturation polarization (Pmax) = 15.861 µC/cm2 and maximum piezoelectric coefficient (d33) = 256 pC/N obtained for PLZT x = 0.07 for the sample sintered at 1200 °C.

Keywords

Lanthanum Piezoelectric Property Morphotropic Phase Boundary Piezoelectric Coefficient Lanthanum Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors are thankful to UGC, New Delhi for financial support.

References

  1. 1.
    S. Somwan, N. Funsueb, A. Limpichaipanit, A. Ngamjarurojana, Ceram. Int. 42, 13223 (2016)CrossRefGoogle Scholar
  2. 2.
    V.L. Mathe, G. Srinivasan, A.M. Balbashov, App. Phys. Lett. 92, 122505 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Shi, K.H. Lam, K. Li, J. Alloys Compd. 617, 485 (2014)CrossRefGoogle Scholar
  4. 4.
    R. Rani, S. Singh, J.K. Juneja, K.K. Raina, C. Prakash, J. Electroceram. 32, 141 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Prabu, I.B. Shameem Banu, S. Gobalakrishnan, M. Chavali, J. Alloys Compd. 551, 200 (2013)CrossRefGoogle Scholar
  6. 6.
    S.G. Lu, Z.H. Cai, Y.X. Ouyang, Y.M. Deng, S.J. Zhang, Q.M. Zhang, Ceram. Int. 41, S15 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Yao, L. Luo, Q. Zuo, W. Li, J. Zhou, J. Alloys Compd. 673, 102 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Otonicar, A. Reichmann, K. Reichmann, J. Eur. Ceram. Soc. 36, 2495 (2016)CrossRefGoogle Scholar
  9. 9.
    A.D. Sheikh, H.H. Kumar, V.L. Mathe, Solid State Sci. 12, 1534 (2010)CrossRefGoogle Scholar
  10. 10.
    Q. Liao, P. Huang, Z. An, D. Li, H. Huang, C. Zhang, Scr. Mater. 115, 14 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Narayanan, S. Tong, B. Ma, S. Liu, U. Balachandran, Appl. Phys. Lett. 100, 022907 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Płońska, M. Adamczyk, Phase Transit. 88, 786 (2015)CrossRefGoogle Scholar
  13. 13.
    C.R. Winkler, A.R. Damodaran, J. Karthik, L.W. Martin, M.L. Taheri, Micron 43, 1121 (2012)CrossRefGoogle Scholar
  14. 14.
    D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, X. Ren, J. Appl. Phys. 109, 054110 (2011)CrossRefGoogle Scholar
  15. 15.
    J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, J. Eur. Ceram. Soc. 35, 1785 (2015)CrossRefGoogle Scholar
  16. 16.
    C.M. Lonkar, D.K. Kharat, H.H. Kumar, S. Prasad, K. Balasubramanian, J. Mater. Sci. Mater. Electron. 24, 411 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Govindan, A. Sharma, A.K. Pandey, S.K. Gaur, Indian J. Phys. 85, 1829 (2012)CrossRefGoogle Scholar
  18. 18.
    T. Li, J. Liu, H. Li, Y. Xu, J. Mater. Sci.: Mater. Electron. 22, 1188 (2011)Google Scholar
  19. 19.
    A. Kumar, V.V. Bhanu Prasad, K.C. James Raju, A.R. James, J. Alloys Compd. 599, 53 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Kumar, V.V. Bhanu Prasad, K.C. James Raju, A.R. James, Eur. Phys. J. B 88, 287 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Kumar, S. Reddy Emani, V.V. Bhanu Prasad, K.C. James Raju, A.R. James, J. Eur. Ceram. Soc. 36, 2505 (2016)CrossRefGoogle Scholar
  22. 22.
    V. Kalem, B. Am, M. Timuin, Ceram. Int. 37, 1265 (2011)CrossRefGoogle Scholar
  23. 23.
    J. Yi, X. Zhang, M. Shen, S. Jiang, J. Xia, Appl. Phys. A 120, 835 (2015)CrossRefGoogle Scholar
  24. 24.
    X.J. Wang, J.H. Huang, J. Wang, Smart Mater. Struct. 24, 075017 (2015)CrossRefGoogle Scholar
  25. 25.
    J.D.S. Guerra, A.C. Silva, R. Mcintosh, M.M. Hoque, R. Guo, A.S. Bhalla, Integr. Ferroelectr. 166, 158 (2015)CrossRefGoogle Scholar
  26. 26.
    E. Buixaderas, M. Berta, L. Kozielski, I. Gregora, Phase Transit. 84, 528 (2011)CrossRefGoogle Scholar
  27. 27.
    E. Buixaderas, I. Gregora, S. Kamba, J. Petzelt, M. Kosec, J. Phys.: Condens. Matter 20, 345229 (2008)Google Scholar
  28. 28.
    F.-J. Yang, X. Cheng, Y. Zhang, Ceram. Int. 42, 2324 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Zhang, X. Cheng, Y. Zhang, Trans. Nonferr. Met. Soc. China 16, 638 (2006). (English Ed.) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations