Skip to main content
Log in

Optical properties and UV photoresponse of Na2x Zn1−x O thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Na2x Zn1−x O thin films were successfully synthesized on quartz glass substrates by sol–gel method. The effect of Na content on the microstructure, optical properties and UV photoresponse of the thin films was investigated using X-ray diffraction, optical absorbance, photoluminescence, and conductivity measurements. The results indicate that the Na0.04Zn0.98O thin film exhibits the strongest preferential c-axis orientation with a polycrystalline hexagonal wurtzite structure and has the largest optical band gap. An obvious decrease in crystal size has been observed with the increasing of Na content. A weak ultraviolet emission band at about 381 nm and a strong visible emission band have been observed in the photoluminescence spectra. The Na0.04Zn0.98O thin film has the shortest growth and decay time (45 and 18 s, respectively) and the largest photoresponse. The results indicate that the photoresponse can be effectively improved by means of moderate Na doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.T. Nguyen, S.G. Ri, T. Nagata, K. Ishibashi, K. Takahashi, Y. Tsunekawa, S. Suzuki, T. Chikyow, Epitaxial growth of nonpolar ZnO and n-ZnO/i-ZnO/p-GaN heterostructure on Si(001) for ultraviolet light emitting diodes. Appl. Phys. Express 7, 062102 (2014)

    Article  Google Scholar 

  2. J.H. He, Y.H. Lin, M.E. McConney, V.V. Tsukruk, Z.L. Wang, G. Bao, Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization. J. Appl. Phys. 102, 084303 (2007)

    Article  Google Scholar 

  3. Y. Hu, Y. Chang, P. Fei, R.L. Snyder, Z.L. Wang, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4, 1234–1240 (2010)

    Article  Google Scholar 

  4. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009)

    Article  Google Scholar 

  5. W.Y. Weng, S.J. Chang, C.L. Hsu, T.J. Hsueh, A ZnO-nanowire phototransistor prepared on glass substrates. ACS Appl. Mater. Interfaces 3, 162–166 (2011)

    Article  Google Scholar 

  6. M. Liu, H.K. Kim, Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Appl. Phys. Lett. 84, 173–175 (2004)

    Article  Google Scholar 

  7. X. Ye, H. Liu, N. Hu, J. Wang, M. Li, Y. Zhang, A novel photoconductive UV detector based on ZnO/RGO composite with enhanced photoresponse performance. Mater. Lett. 150, 126–129 (2015)

    Article  Google Scholar 

  8. K. Moazzami, T.E. Murphy, J.D. Phillips, M.C.K. Cheung, A.N. Cartwright, Sub-bandgap photoconductivity in ZnO epilayers and extraction of trap density spectra. Semicond. Sci. Technol. 21, 717 (2006)

    Article  Google Scholar 

  9. S. Dhara, P.K. Giri, Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Res. Lett. 6, 504 (2011)

    Article  Google Scholar 

  10. X. Wang, M. Liao, Y. Zhong, J.Y. Zheng, W. Tian, T. Zhai, C. Zhi, Y. Ma, J. Yao, Y. Bando, D. Golberg, ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors. Adv. Mater. 24, 3421–3425 (2012)

    Article  Google Scholar 

  11. J.B.K. Law, J.T.L. Thong, Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Lett. 88, 133114 (2006)

    Article  Google Scholar 

  12. H.L. Porter, A.L. Cai, J.F. Muth, J. Narayan, Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium. Appl. Phys. Lett. 86, 211918 (2005)

    Article  Google Scholar 

  13. S.J. Young, Y.H. Liu, Ultraviolet photodetectors with Ga-doped ZnO nanosheets structure. Microelectron. Eng. 148, 14–16 (2015)

    Article  Google Scholar 

  14. J. Lv, Y. Sun, L. Cao, M. Zhao, F. Shang, S. Mao, Y. Jiang, J. Xu, F. Wang, Z. Zhou, Y. Wei, G. He, M. Zhang, X. Song, Z. Sun, Effect of reaction temperature on surface morphology and photoelectric properties of ZnO grown by hydrothermal method in mixed solvent. J. Mater. Sci. Mater. Electron. 26, 5518–5523 (2015)

    Article  Google Scholar 

  15. J.J. Lai, Y.J. Lin, Y.H. Chen, H.C. Chang, C.J. Liu, Y.Y. Zou, Y.T. Shih, M.C. Wang, Effects of Na content on the luminescence behavior, conduction type, and crystal structure of Na-doped ZnO films. J. Appl. Phys. 110, 013704 (2011)

    Article  Google Scholar 

  16. J. Lue, J. Dai, J. Zhu, X. Song, Z. Sun, Effect of Na concentrations on microstructure and optical properties of ZnO films. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26, 23–27 (2011)

    Article  Google Scholar 

  17. L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, M. Zhou, Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol–gel method. J. Alloys Compd. 623, 367–373 (2015)

    Article  Google Scholar 

  18. K.M. Lin, P. Tsai, Growth mechanism and characterization of ZnO: Al multi-layered thin films by sol-gel technique. Thin Solid Films 515, 8601–8604 (2007)

    Article  Google Scholar 

  19. T.P. Rao, M.C.S. Kumar, S.A. Angayarkanni, M. Ashok, Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis. J. Alloys Compd. 485, 413–417 (2009)

    Article  Google Scholar 

  20. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloys Compd. 448, 21–26 (2008)

    Article  Google Scholar 

  21. K. Siraj, K. Javaid, J.D. Pedarnig, M.A. Bodea, S. Naseem, Electron beam induced nanostructures and band gap tuning of ZnO thin films. J. Alloys Compd. 563, 280–284 (2013)

    Article  Google Scholar 

  22. V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4, 2717–2725 (2012)

    Article  Google Scholar 

  23. S. Suwanboon, P. Amornpitoksuk, P. Bangrak, N. Muensit, Optical, photocatalytic and bactericidal properties of Zn1−x La x O and Zn1−x Mg x O nanostructures prepared by a sol–gel method. Ceram. Int. 39, 5597–5608 (2013)

    Article  Google Scholar 

  24. B. El Filali, T.V. Torchynska, A.I. Diaz Cano, Photoluminescence and Raman scattering study in ZnO: Cu nanocrystals. J. Lumin. 161, 25–30 (2015)

    Article  Google Scholar 

  25. D. Anbuselvan, S. Muthukumaran, Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt. Mater 42, 124–131 (2015)

    Article  Google Scholar 

  26. J.H. Yang, J.H. Zheng, H.J. Zhai, L.L. Yang, Y.J. Zhang, J.H. Lang, M. Gao, Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates. J. Alloys Compd. 475, 741–744 (2009)

    Article  Google Scholar 

  27. J. Yang, J. Zheng, H. Zhai, X. Yang, L. Yang, Y. Liu, J. Lang, M. Gao, Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method. J. Alloys Compd. 489, 51–55 (2010)

    Article  Google Scholar 

  28. M. Kashif, U. Hashim, M.E. Ali, S.M.U. Ali, M. Rusop, Z.H. Ibupoto, M. Willander, Effect of different seed solutions on the morphology and electrooptical properties of ZnO nanorods. J. Nanomater. 2012, 452407 (2012)

    Article  Google Scholar 

  29. K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Lim, S.J. Park, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett. 83, 63–65 (2003)

    Article  Google Scholar 

  30. J. Lv, P. Yan, M. Zhao, Y. Sun, F. Shang, G. He, M. Zhang, Z. Sun, Effect of ammonia on morphology, wettability and photoresponse of ZnO nanorods grown by hydrothermal method. J. Alloys Compd. 648, 676–680 (2015)

    Article  Google Scholar 

  31. X. Xu, C. Xu, J. Hu, High-performance deep ultraviolet photodetectors based on ZnO quantum dot assemblies. J. Appl. Phys. 116, 103105 (2014)

    Article  Google Scholar 

  32. C.F. Dee, S.K. Chong, S.A. Rahman, F.S. Omar, N.M. Huang, B.Y. Majlis, M.M. Salleh, Hierarchical Si/ZnO trunk-branch nanostructure for photocurrent enhancement. Nanoscale Res. Lett. 9, 469 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 51102072, 51472003, 51272001, 21201052, 51572002), Natural Science Foundation of Anhui Higher Education Institution of China (Nos. KJ2015ZD32, KJ2012Z336, KJ2013A224), Fund for “136” Talent of Hefei Normal University (No. 2014136KJB03), Fund of Hefei Normal University (No. 2015QN05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhao, Gang He or Zhaoqi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Wang, W., Zhao, M. et al. Optical properties and UV photoresponse of Na2x Zn1−x O thin film. J Mater Sci: Mater Electron 28, 1022–1027 (2017). https://doi.org/10.1007/s10854-016-5623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5623-x

Keywords

Navigation