Optical properties and UV photoresponse of Na2x Zn1−x O thin film

  • Jianguo Lv
  • Wenhao Wang
  • Min Zhao
  • Yuebing Cheng
  • Weili Zhu
  • Gang He
  • Miao Zhang
  • Zhaoqi Sun
  • Xiaoshuang Chen


Na2x Zn1−x O thin films were successfully synthesized on quartz glass substrates by sol–gel method. The effect of Na content on the microstructure, optical properties and UV photoresponse of the thin films was investigated using X-ray diffraction, optical absorbance, photoluminescence, and conductivity measurements. The results indicate that the Na0.04Zn0.98O thin film exhibits the strongest preferential c-axis orientation with a polycrystalline hexagonal wurtzite structure and has the largest optical band gap. An obvious decrease in crystal size has been observed with the increasing of Na content. A weak ultraviolet emission band at about 381 nm and a strong visible emission band have been observed in the photoluminescence spectra. The Na0.04Zn0.98O thin film has the shortest growth and decay time (45 and 18 s, respectively) and the largest photoresponse. The results indicate that the photoresponse can be effectively improved by means of moderate Na doping.


Monoethanol Amine Quartz Glass Substrate Ethylene Glycol Monomethyl Ether Deep Donor Level Visible Emission Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Natural Science Foundation of China (Nos. 51102072, 51472003, 51272001, 21201052, 51572002), Natural Science Foundation of Anhui Higher Education Institution of China (Nos. KJ2015ZD32, KJ2012Z336, KJ2013A224), Fund for “136” Talent of Hefei Normal University (No. 2014136KJB03), Fund of Hefei Normal University (No. 2015QN05).


  1. 1.
    N.T. Nguyen, S.G. Ri, T. Nagata, K. Ishibashi, K. Takahashi, Y. Tsunekawa, S. Suzuki, T. Chikyow, Epitaxial growth of nonpolar ZnO and n-ZnO/i-ZnO/p-GaN heterostructure on Si(001) for ultraviolet light emitting diodes. Appl. Phys. Express 7, 062102 (2014)CrossRefGoogle Scholar
  2. 2.
    J.H. He, Y.H. Lin, M.E. McConney, V.V. Tsukruk, Z.L. Wang, G. Bao, Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization. J. Appl. Phys. 102, 084303 (2007)CrossRefGoogle Scholar
  3. 3.
    Y. Hu, Y. Chang, P. Fei, R.L. Snyder, Z.L. Wang, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4, 1234–1240 (2010)CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009)CrossRefGoogle Scholar
  5. 5.
    W.Y. Weng, S.J. Chang, C.L. Hsu, T.J. Hsueh, A ZnO-nanowire phototransistor prepared on glass substrates. ACS Appl. Mater. Interfaces 3, 162–166 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Liu, H.K. Kim, Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Appl. Phys. Lett. 84, 173–175 (2004)CrossRefGoogle Scholar
  7. 7.
    X. Ye, H. Liu, N. Hu, J. Wang, M. Li, Y. Zhang, A novel photoconductive UV detector based on ZnO/RGO composite with enhanced photoresponse performance. Mater. Lett. 150, 126–129 (2015)CrossRefGoogle Scholar
  8. 8.
    K. Moazzami, T.E. Murphy, J.D. Phillips, M.C.K. Cheung, A.N. Cartwright, Sub-bandgap photoconductivity in ZnO epilayers and extraction of trap density spectra. Semicond. Sci. Technol. 21, 717 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Dhara, P.K. Giri, Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Res. Lett. 6, 504 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Wang, M. Liao, Y. Zhong, J.Y. Zheng, W. Tian, T. Zhai, C. Zhi, Y. Ma, J. Yao, Y. Bando, D. Golberg, ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors. Adv. Mater. 24, 3421–3425 (2012)CrossRefGoogle Scholar
  11. 11.
    J.B.K. Law, J.T.L. Thong, Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Lett. 88, 133114 (2006)CrossRefGoogle Scholar
  12. 12.
    H.L. Porter, A.L. Cai, J.F. Muth, J. Narayan, Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium. Appl. Phys. Lett. 86, 211918 (2005)CrossRefGoogle Scholar
  13. 13.
    S.J. Young, Y.H. Liu, Ultraviolet photodetectors with Ga-doped ZnO nanosheets structure. Microelectron. Eng. 148, 14–16 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Lv, Y. Sun, L. Cao, M. Zhao, F. Shang, S. Mao, Y. Jiang, J. Xu, F. Wang, Z. Zhou, Y. Wei, G. He, M. Zhang, X. Song, Z. Sun, Effect of reaction temperature on surface morphology and photoelectric properties of ZnO grown by hydrothermal method in mixed solvent. J. Mater. Sci. Mater. Electron. 26, 5518–5523 (2015)CrossRefGoogle Scholar
  15. 15.
    J.J. Lai, Y.J. Lin, Y.H. Chen, H.C. Chang, C.J. Liu, Y.Y. Zou, Y.T. Shih, M.C. Wang, Effects of Na content on the luminescence behavior, conduction type, and crystal structure of Na-doped ZnO films. J. Appl. Phys. 110, 013704 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Lue, J. Dai, J. Zhu, X. Song, Z. Sun, Effect of Na concentrations on microstructure and optical properties of ZnO films. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26, 23–27 (2011)CrossRefGoogle Scholar
  17. 17.
    L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, M. Zhou, Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol–gel method. J. Alloys Compd. 623, 367–373 (2015)CrossRefGoogle Scholar
  18. 18.
    K.M. Lin, P. Tsai, Growth mechanism and characterization of ZnO: Al multi-layered thin films by sol-gel technique. Thin Solid Films 515, 8601–8604 (2007)CrossRefGoogle Scholar
  19. 19.
    T.P. Rao, M.C.S. Kumar, S.A. Angayarkanni, M. Ashok, Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis. J. Alloys Compd. 485, 413–417 (2009)CrossRefGoogle Scholar
  20. 20.
    S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloys Compd. 448, 21–26 (2008)CrossRefGoogle Scholar
  21. 21.
    K. Siraj, K. Javaid, J.D. Pedarnig, M.A. Bodea, S. Naseem, Electron beam induced nanostructures and band gap tuning of ZnO thin films. J. Alloys Compd. 563, 280–284 (2013)CrossRefGoogle Scholar
  22. 22.
    V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4, 2717–2725 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Suwanboon, P. Amornpitoksuk, P. Bangrak, N. Muensit, Optical, photocatalytic and bactericidal properties of Zn1−xLaxO and Zn1−xMgxO nanostructures prepared by a sol–gel method. Ceram. Int. 39, 5597–5608 (2013)CrossRefGoogle Scholar
  24. 24.
    B. El Filali, T.V. Torchynska, A.I. Diaz Cano, Photoluminescence and Raman scattering study in ZnO: Cu nanocrystals. J. Lumin. 161, 25–30 (2015)CrossRefGoogle Scholar
  25. 25.
    D. Anbuselvan, S. Muthukumaran, Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt. Mater 42, 124–131 (2015)CrossRefGoogle Scholar
  26. 26.
    J.H. Yang, J.H. Zheng, H.J. Zhai, L.L. Yang, Y.J. Zhang, J.H. Lang, M. Gao, Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates. J. Alloys Compd. 475, 741–744 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Yang, J. Zheng, H. Zhai, X. Yang, L. Yang, Y. Liu, J. Lang, M. Gao, Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method. J. Alloys Compd. 489, 51–55 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Kashif, U. Hashim, M.E. Ali, S.M.U. Ali, M. Rusop, Z.H. Ibupoto, M. Willander, Effect of different seed solutions on the morphology and electrooptical properties of ZnO nanorods. J. Nanomater. 2012, 452407 (2012)CrossRefGoogle Scholar
  29. 29.
    K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Lim, S.J. Park, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett. 83, 63–65 (2003)CrossRefGoogle Scholar
  30. 30.
    J. Lv, P. Yan, M. Zhao, Y. Sun, F. Shang, G. He, M. Zhang, Z. Sun, Effect of ammonia on morphology, wettability and photoresponse of ZnO nanorods grown by hydrothermal method. J. Alloys Compd. 648, 676–680 (2015)CrossRefGoogle Scholar
  31. 31.
    X. Xu, C. Xu, J. Hu, High-performance deep ultraviolet photodetectors based on ZnO quantum dot assemblies. J. Appl. Phys. 116, 103105 (2014)CrossRefGoogle Scholar
  32. 32.
    C.F. Dee, S.K. Chong, S.A. Rahman, F.S. Omar, N.M. Huang, B.Y. Majlis, M.M. Salleh, Hierarchical Si/ZnO trunk-branch nanostructure for photocurrent enhancement. Nanoscale Res. Lett. 9, 469 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringHefei Normal UniversityHefeiChina
  2. 2.School of Physics and Material ScienceAnhui UniversityHefeiChina
  3. 3.National Laboratory for Infrared Physics, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations