Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications

  • Kalim Deshmukh
  • M. Basheer Ahamed
  • Rajendra R. Deshmukh
  • S. K. Khadheer Pasha
  • Kishor Kumar Sadasivuni
  • Anji Reddy Polu
  • Deepalekshmi Ponnamma
  • Mariam Al-Ali AlMaadeed
  • K. Chidambaram


In this study, biopolymer nanocomposites of cellulose acetate (CA) and Al2O3 nanoparticles (Al2O3 NPs) were successfully obtained using solution blending method. The effect of Al2O3 NPs loading on the microstructure, morphology, thermal and dielectric properties of CA/Al2O3 nanocomposites was investigated using FTIR, XRD, TGA, optical microscopy, SEM, AFM and impedance spectroscopy technique. The FTIR results infer good interaction between CA and Al2O3 NPs. The XRD and microscopic studies demonstrated that Al2O3 nanoparticles were homogeneously dispersed in the CA matrix. The TGA results indicate that the onset degradation temperature of CA/Al2O3 nanocomposites is shifted towards higher temperature in the presence of Al2O3 NPs. The contact angle measurements infer reduction in the wettability of CA matrix with increasing Al2O3 NPs loading. On the other hand, the dielectric properties of CA were improved due to an incorporation of Al2O3 NPs. The dielectric constant increases from 8.63 (50 Hz, 30 °C) for neat CA matrix to 27.57 (50 Hz, 30 °C) for CA/Al2O3 nanocomposites with 25 wt% Al2O3 loading. Similarly, the dielectric loss also increases from 0.26 (50 Hz, 30 °C) for neat CA matrix to 0.64 (50 Hz, 30 °C) for CA/Al2O3 nanocomposites with 25 wt% Al2O3 NPs loading. However, very low values of tan δ (below 1) were observed for all the samples. These results suggest that CA/Al2O3 nanocomposites with improved dielectric properties seem to be a promising candidate for designing electronic devices such as embedded passives.


Dielectric Constant Contact Angle Dielectric Property Dielectric Loss Cellulose Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors, Kalim Deshmukh would like to acknowledge the financial support from the management of B. S. Abdur Rahman University, Chennai - 600048, TN, India in terms of Junior Research Fellowship (JRF) to carry out this research work.


  1. 1.
    P.A. Wilbon, F. Chu, C. Tang, Macromol. Rapid Commun. 34, 8–37 (2013)CrossRefGoogle Scholar
  2. 2.
    C.K. Williams, M.A. Hillmyer, Polym. Rev. 48, 1–10 (2008)CrossRefGoogle Scholar
  3. 3.
    K.M. Nampoothiri, N.R. Nair, R.P. John, Bioresour. Technol. 101, 8493–8501 (2010)CrossRefGoogle Scholar
  4. 4.
    L. Yu, S. Petinakis, K. Dean, A. Bilyk, D. Wu, Macromol. Symp. 249–250, 535–539 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Namazi, S. Jafarirad, J. Appl. Polym. Sci. 110, 4034–4039 (2008)CrossRefGoogle Scholar
  6. 6.
    Y. Habibi, L.A. Lucia, O.J. Rojas, Chem. Rev. 110, 3479–3500 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Nishiyama, P. Langan, M. Wada, V.T. Forsyth, Acta Crystallogr. D Biol. Crystallogr. 66, 1172–1177 (2010)CrossRefGoogle Scholar
  8. 8.
    J.C. Jansen, R. Cassano, S. Trombino, A. Cilea, N. Picci, E. Drioli, L. Giorno, Cellulose 18, 359–370 (2011)CrossRefGoogle Scholar
  9. 9.
    Z. Li, D. Zhang, J. Weng, B. Chen, H. Liu, Carbohydr. Polym. 99, 748–754 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Barkhordari, M. Yadollah, H. Namazi, J. Polym. Res. 21, 1–9 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Yan, K. Ishihara, J. Polym. Sci. A Polym. Chem. 46, 3306–3313 (2008)CrossRefGoogle Scholar
  12. 12.
    C. Yan, J. Zhang, Y. Lv, J. Yu, J. Wu, J. Zhang, J. He, Biomacromolecules 10, 2013–2018 (2009)CrossRefGoogle Scholar
  13. 13.
    V. Tserki, N.E. Zafeiropoulus, F. Simon, C. Panayiotou, Compos. A. Appl. Sci. Manuf. 36, 1110–1118 (2005)CrossRefGoogle Scholar
  14. 14.
    K.J. Edgar, C.M. Buchanan, J.S. Debenham, P.A. Rundquist, B.D. Seiler, M.C. Shelton, D. Tindall, Prog. Polym. Sci. 26, 1605–1688 (2001)CrossRefGoogle Scholar
  15. 15.
    A. Biswas, R.L. Shogren, J.L. Willet, Biomacromolecules 6, 1843–1845 (2005)CrossRefGoogle Scholar
  16. 16.
    F.C. Kung, W.L. Chou, M.C. Yang, Polym. Adv. Technol. 17, 6–11 (2006)CrossRefGoogle Scholar
  17. 17.
    N. Hoenich, Bioresources 1, 270–280 (2006)Google Scholar
  18. 18.
    M. Alexandre, P. Dubois, Mater. Sci. Eng. R Rep. 28, 1–63 (2000)CrossRefGoogle Scholar
  19. 19.
    Y. Dong, D. Chaudhary, C. Ploumis, K.T. Lau, Compos. A Appl. Sci. Manuf. 42, 1483–1492 (2011)CrossRefGoogle Scholar
  20. 20.
    J. E. Lemons, Aluminum oxide ceramics as biomaterials. In Materials Science Monographs, vol 17 (Elsevier Science Publisher, Ligano Sabbiadoro, 1983), pp.117–126Google Scholar
  21. 21.
    D. Mishra, S. Anand, R.K. Panda, R.P. Das, Mater. Lett. 42, 38–45 (2000)CrossRefGoogle Scholar
  22. 22.
    A. Laachachi, M. Ferriol, M. Cochez, J.M. Lopez Cuesta, D. Ruch, Polym. Degrad. Stab. 94, 1373–1378 (2009)CrossRefGoogle Scholar
  23. 23.
    Z. Guo, P. Tony, C. Oyoung, Y. Wang, H.T. Hahn, J. Mater. Chem. 16, 2800–2808 (2006)CrossRefGoogle Scholar
  24. 24.
    M. Schinicro, S. Yoshio, Suharyanto, Y. Yamano, K. Shinichi, Vacuum 81, 762–765 (2007)CrossRefGoogle Scholar
  25. 25.
    Y. Cao, P.C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797–807 (2007)Google Scholar
  26. 26.
    J.K. Nelsen, Y. Hu, J. Phys. D Appl. Phys. 38, 213–222 (2005)CrossRefGoogle Scholar
  27. 27.
    E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, M.P. Paranthaman, T. Aytug, S. Sathyamurthy, K.L. More, J. Li, A. Goyal, Nanotechnology 18, 025703 (2007)CrossRefGoogle Scholar
  28. 28.
    M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Mater. Today 3, 1864–1873 (2016)CrossRefGoogle Scholar
  29. 29.
    S.K.K. Pasha, K. Deshmukh, M.B. Ahamed, K. Chidambaram, M.K. Mohanapriya, N.A.N. Raj, Adv. Polym. Tech. (2015). doi: 10.1002/adv.21616 Google Scholar
  30. 30.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K. Chidambaram, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, Polym. Plast. Technol. Eng. 55, 1240–1253 (2016)CrossRefGoogle Scholar
  31. 31.
    Q.M. Zhang, H. Li, M. Poh, C. Huang, Nature 419, 284–287 (2002)CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, Y. Wang, M. Li, J. Bai, ACS Appl. Mater. Phys. Interfaces 4, 65–68 (2012)CrossRefGoogle Scholar
  33. 33.
    A.C. Balazs, T. Emrick, T.P. Russel, Science 314, 1107–1110 (2006)CrossRefGoogle Scholar
  34. 34.
    A. Kafy, K.K. Sadasivuni, H.C. Kim, A. Akther, J. Kim, Phys. Chem. Chem. Phys. 17, 5923–5931 (2015)CrossRefGoogle Scholar
  35. 35.
    R.B. Romero, C.A.P. Leite, M.D.C. Goncalves, Polymer 50, 161–170 (2009)CrossRefGoogle Scholar
  36. 36.
    R. Abedini, S.M. Mousavi, R. Aminizadeh, Desalination 277, 40–45 (2011)CrossRefGoogle Scholar
  37. 37.
    S. Anita, B. Brabu, D.J. Thiruvadigal, C. Gopalkrishnan, T.S. Natarajan, Carbohydr. Polym. 87, 1065–1072 (2012)CrossRefGoogle Scholar
  38. 38.
    A.S. Figueiriedo, M.G. Sanchez-Loredo, A. Mauricio, M.F.C. Pereira, M. Minhalma, M.N. De Pinho, J. Appl. Polym. Sci. 132, 1–11 (2015)Google Scholar
  39. 39.
    M. Li, I.H. Kim, Y.G. Jeong, J. Appl. Polym. Sci. 118, 2475–2481 (2010)Google Scholar
  40. 40.
    L. Liu, Z. Shen, S. Liang, M. Yi, X. Zhang, S. Ma, J. Mater. Sci. 49, 321–328 (2014)CrossRefGoogle Scholar
  41. 41.
    M.E. Uddin, R.K. Layek, H.K. Kim, N.H. Kim, D. Hui, J.H. Lee, Compos. B 90, 223–231 (2016)CrossRefGoogle Scholar
  42. 42.
    J. Xu, C.P. Wong, in Proceedings of International Symposium on Advanced Packing Materials: Processes, Properties and Interfaces, (Atlanta, 2004), pp. 158–170Google Scholar
  43. 43.
    C. Zhang, R. Mason, G.C. Stevens, in Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, pp. 721–724 (2005)Google Scholar
  44. 44.
    P. Murugaraj, D. Mainwarning, N. Mora-Huertas, J. Appl. Phys. 98, 054304 (2005)CrossRefGoogle Scholar
  45. 45.
    S. Singha, M.J. Thomas, IEEE Trans. Compon. Packag. Technol. 33, 373–385 (2010)CrossRefGoogle Scholar
  46. 46.
    H. Li, G. Liu, B. Liu, W. Chen, S. Chen, Mater. Lett. 61, 1507–1511 (2007)CrossRefGoogle Scholar
  47. 47.
    S. Sathish, S.B. Chandar, N. Manivannan, Iran. Polym. J. 24, 63–74 (2015)CrossRefGoogle Scholar
  48. 48.
    A. Mishra, M. Bajpai, J. Hazard. Mater. 118, 213–217 (2005)CrossRefGoogle Scholar
  49. 49.
    M. Farahmanddjou, N. Golabiyan, J. Ceram. Process. Res. 16, 237–240 (2015)Google Scholar
  50. 50.
    H.S. Kim, N.K. Park, T.J. Lee, M.H. Um, M. Kang, Adv. Mater. Sci. Eng. 2012, 920105–920110 (2012)Google Scholar
  51. 51.
    J. Wang, H. Jiang, N. Jiang, Thermochim. Acta 496, 136–142 (2009)CrossRefGoogle Scholar
  52. 52.
    G. Arthanareeswaran, P. Thanikairelan, K. Srinivasn, D. Mohan, M. Rajendran, Eur. Polym. J. 40, 2153–2159 (2004)CrossRefGoogle Scholar
  53. 53.
    G.M. Raghavendra, T. Jayaramudu, K. Varaprasad, R. Sadiku, S.S. Ray, K.M. Raju, Carbohydr Polym. 93, 553–560 (2013)CrossRefGoogle Scholar
  54. 54.
    B.K. Kim, Y.S. Oh, Y.M. Lee, L.K. Yoon, S. Lee, Polymer 41, 385–390 (2000)CrossRefGoogle Scholar
  55. 55.
    S.M. Pawde, K. Deshmukh, Polym. Eng. Sci. 49, 808–818 (2009)CrossRefGoogle Scholar
  56. 56.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, K. Chidambaram, Eur. Polym. J. 76, 14–27 (2016)CrossRefGoogle Scholar
  57. 57.
    J. Lu, K.-S. Moon, J. Xu, C.P. Wong, J. Mater. Chem. 16, 1543–1548 (2006)CrossRefGoogle Scholar
  58. 58.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, P.R. Bhagat, S.K.K. Pasha, A. Bhagat, R. Shirbhate, F. Telare, C. Lakhani, Polym. Plast. Technol. Eng. 55, 231–241 (2016)CrossRefGoogle Scholar
  59. 59.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, S.K.K. Pasha, M.A.A. AlMaadeed, K. Chidambaram, J. Polym. Res. 23, 159 (2016)CrossRefGoogle Scholar
  60. 60.
    K.K. Sadasivuni, D. Ponnamma, B. Kumar, M. Strankowski, R. Cardinaels, P. Moldenaers, S. Thomas, Y. Grohens, Compos. Sci. Technol. 104, 18–25 (2014)CrossRefGoogle Scholar
  61. 61.
    K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, R.R. Deshmukh, P.R. Bhagat, RSC Adv. 5, 61933–61945 (2015)CrossRefGoogle Scholar
  62. 62.
    K. Deshmukh, M.B. Ahamed, A.R. Polu, K.K. Sadasivuni, S.K.K. Pasha, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, K. Chidambaram, J. Mater. Sci.: Mater. Electron. (2016). doi: 10.1007/s10854-016-5267-x Google Scholar
  63. 63.
    M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K. Pasha, Adv. Mater. Lett. (2016). doi: 10.5185/amlett.2016.6555 Google Scholar
  64. 64.
    F. He, S. Lau, H.L. Chen, J.T. Fan, Adv. Mater. 21, 710–715 (2009)CrossRefGoogle Scholar
  65. 65.
    V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, J.F. Scott, G.L. Sharma, J. Mater. Sci. 48, 2151–2157 (2013)CrossRefGoogle Scholar
  66. 66.
    L.Y. Xie, X.Y. Huang, C. Wu, P.K. Jiang, J. Mater. Chem. 21, 5897–5906 (2011)CrossRefGoogle Scholar
  67. 67.
    M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Int. J. Chem. Tech. Res. 5, 32–41 (2015)Google Scholar
  68. 68.
    S.M. Pawde, K. Deshmukh, J. Appl. Polym. Sci. 110, 2569–2578 (2008)CrossRefGoogle Scholar
  69. 69.
    G. Sui, B. Li, G. Bratzel, L. Baker, W.H. Zhong, X.P. Yang, Soft Matter 5, 3593–3598 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kalim Deshmukh
    • 1
  • M. Basheer Ahamed
    • 1
  • Rajendra R. Deshmukh
    • 2
  • S. K. Khadheer Pasha
    • 3
  • Kishor Kumar Sadasivuni
    • 4
  • Anji Reddy Polu
    • 5
  • Deepalekshmi Ponnamma
    • 6
  • Mariam Al-Ali AlMaadeed
    • 6
  • K. Chidambaram
    • 3
  1. 1.Department of PhysicsB.S. Abdur Rahman UniversityChennaiIndia
  2. 2.Department of PhysicsInstitute of Chemical TechnologyMatunga, MumbaiIndia
  3. 3.Department of Physics, School of Advanced SciencesVIT UniversityVelloreIndia
  4. 4.Mechanical and Industrial Engineering DepartmentQatar UniversityDohaQatar
  5. 5.Department of PhysicsVardhaman College of EngineeringHyderabadIndia
  6. 6.Center for Advanced MaterialsQatar UniversityDohaQatar

Personalised recommendations