Skip to main content
Log in

Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, biopolymer nanocomposites of cellulose acetate (CA) and Al2O3 nanoparticles (Al2O3 NPs) were successfully obtained using solution blending method. The effect of Al2O3 NPs loading on the microstructure, morphology, thermal and dielectric properties of CA/Al2O3 nanocomposites was investigated using FTIR, XRD, TGA, optical microscopy, SEM, AFM and impedance spectroscopy technique. The FTIR results infer good interaction between CA and Al2O3 NPs. The XRD and microscopic studies demonstrated that Al2O3 nanoparticles were homogeneously dispersed in the CA matrix. The TGA results indicate that the onset degradation temperature of CA/Al2O3 nanocomposites is shifted towards higher temperature in the presence of Al2O3 NPs. The contact angle measurements infer reduction in the wettability of CA matrix with increasing Al2O3 NPs loading. On the other hand, the dielectric properties of CA were improved due to an incorporation of Al2O3 NPs. The dielectric constant increases from 8.63 (50 Hz, 30 °C) for neat CA matrix to 27.57 (50 Hz, 30 °C) for CA/Al2O3 nanocomposites with 25 wt% Al2O3 loading. Similarly, the dielectric loss also increases from 0.26 (50 Hz, 30 °C) for neat CA matrix to 0.64 (50 Hz, 30 °C) for CA/Al2O3 nanocomposites with 25 wt% Al2O3 NPs loading. However, very low values of tan δ (below 1) were observed for all the samples. These results suggest that CA/Al2O3 nanocomposites with improved dielectric properties seem to be a promising candidate for designing electronic devices such as embedded passives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.A. Wilbon, F. Chu, C. Tang, Macromol. Rapid Commun. 34, 8–37 (2013)

    Article  Google Scholar 

  2. C.K. Williams, M.A. Hillmyer, Polym. Rev. 48, 1–10 (2008)

    Article  Google Scholar 

  3. K.M. Nampoothiri, N.R. Nair, R.P. John, Bioresour. Technol. 101, 8493–8501 (2010)

    Article  Google Scholar 

  4. L. Yu, S. Petinakis, K. Dean, A. Bilyk, D. Wu, Macromol. Symp. 249–250, 535–539 (2007)

    Article  Google Scholar 

  5. H. Namazi, S. Jafarirad, J. Appl. Polym. Sci. 110, 4034–4039 (2008)

    Article  Google Scholar 

  6. Y. Habibi, L.A. Lucia, O.J. Rojas, Chem. Rev. 110, 3479–3500 (2010)

    Article  Google Scholar 

  7. Y. Nishiyama, P. Langan, M. Wada, V.T. Forsyth, Acta Crystallogr. D Biol. Crystallogr. 66, 1172–1177 (2010)

    Article  Google Scholar 

  8. J.C. Jansen, R. Cassano, S. Trombino, A. Cilea, N. Picci, E. Drioli, L. Giorno, Cellulose 18, 359–370 (2011)

    Article  Google Scholar 

  9. Z. Li, D. Zhang, J. Weng, B. Chen, H. Liu, Carbohydr. Polym. 99, 748–754 (2014)

    Article  Google Scholar 

  10. S. Barkhordari, M. Yadollah, H. Namazi, J. Polym. Res. 21, 1–9 (2014)

    Article  Google Scholar 

  11. L. Yan, K. Ishihara, J. Polym. Sci. A Polym. Chem. 46, 3306–3313 (2008)

    Article  Google Scholar 

  12. C. Yan, J. Zhang, Y. Lv, J. Yu, J. Wu, J. Zhang, J. He, Biomacromolecules 10, 2013–2018 (2009)

    Article  Google Scholar 

  13. V. Tserki, N.E. Zafeiropoulus, F. Simon, C. Panayiotou, Compos. A. Appl. Sci. Manuf. 36, 1110–1118 (2005)

    Article  Google Scholar 

  14. K.J. Edgar, C.M. Buchanan, J.S. Debenham, P.A. Rundquist, B.D. Seiler, M.C. Shelton, D. Tindall, Prog. Polym. Sci. 26, 1605–1688 (2001)

    Article  Google Scholar 

  15. A. Biswas, R.L. Shogren, J.L. Willet, Biomacromolecules 6, 1843–1845 (2005)

    Article  Google Scholar 

  16. F.C. Kung, W.L. Chou, M.C. Yang, Polym. Adv. Technol. 17, 6–11 (2006)

    Article  Google Scholar 

  17. N. Hoenich, Bioresources 1, 270–280 (2006)

    Google Scholar 

  18. M. Alexandre, P. Dubois, Mater. Sci. Eng. R Rep. 28, 1–63 (2000)

    Article  Google Scholar 

  19. Y. Dong, D. Chaudhary, C. Ploumis, K.T. Lau, Compos. A Appl. Sci. Manuf. 42, 1483–1492 (2011)

    Article  Google Scholar 

  20. J. E. Lemons, Aluminum oxide ceramics as biomaterials. In Materials Science Monographs, vol 17 (Elsevier Science Publisher, Ligano Sabbiadoro, 1983), pp.117–126

  21. D. Mishra, S. Anand, R.K. Panda, R.P. Das, Mater. Lett. 42, 38–45 (2000)

    Article  Google Scholar 

  22. A. Laachachi, M. Ferriol, M. Cochez, J.M. Lopez Cuesta, D. Ruch, Polym. Degrad. Stab. 94, 1373–1378 (2009)

    Article  Google Scholar 

  23. Z. Guo, P. Tony, C. Oyoung, Y. Wang, H.T. Hahn, J. Mater. Chem. 16, 2800–2808 (2006)

    Article  Google Scholar 

  24. M. Schinicro, S. Yoshio, Suharyanto, Y. Yamano, K. Shinichi, Vacuum 81, 762–765 (2007)

    Article  Google Scholar 

  25. Y. Cao, P.C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797–807 (2007)

    Google Scholar 

  26. J.K. Nelsen, Y. Hu, J. Phys. D Appl. Phys. 38, 213–222 (2005)

    Article  Google Scholar 

  27. E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, M.P. Paranthaman, T. Aytug, S. Sathyamurthy, K.L. More, J. Li, A. Goyal, Nanotechnology 18, 025703 (2007)

    Article  Google Scholar 

  28. M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Mater. Today 3, 1864–1873 (2016)

    Article  Google Scholar 

  29. S.K.K. Pasha, K. Deshmukh, M.B. Ahamed, K. Chidambaram, M.K. Mohanapriya, N.A.N. Raj, Adv. Polym. Tech. (2015). doi:10.1002/adv.21616

    Google Scholar 

  30. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K. Chidambaram, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, Polym. Plast. Technol. Eng. 55, 1240–1253 (2016)

    Article  Google Scholar 

  31. Q.M. Zhang, H. Li, M. Poh, C. Huang, Nature 419, 284–287 (2002)

    Article  Google Scholar 

  32. Y. Zhang, Y. Wang, M. Li, J. Bai, ACS Appl. Mater. Phys. Interfaces 4, 65–68 (2012)

    Article  Google Scholar 

  33. A.C. Balazs, T. Emrick, T.P. Russel, Science 314, 1107–1110 (2006)

    Article  Google Scholar 

  34. A. Kafy, K.K. Sadasivuni, H.C. Kim, A. Akther, J. Kim, Phys. Chem. Chem. Phys. 17, 5923–5931 (2015)

    Article  Google Scholar 

  35. R.B. Romero, C.A.P. Leite, M.D.C. Goncalves, Polymer 50, 161–170 (2009)

    Article  Google Scholar 

  36. R. Abedini, S.M. Mousavi, R. Aminizadeh, Desalination 277, 40–45 (2011)

    Article  Google Scholar 

  37. S. Anita, B. Brabu, D.J. Thiruvadigal, C. Gopalkrishnan, T.S. Natarajan, Carbohydr. Polym. 87, 1065–1072 (2012)

    Article  Google Scholar 

  38. A.S. Figueiriedo, M.G. Sanchez-Loredo, A. Mauricio, M.F.C. Pereira, M. Minhalma, M.N. De Pinho, J. Appl. Polym. Sci. 132, 1–11 (2015)

    Google Scholar 

  39. M. Li, I.H. Kim, Y.G. Jeong, J. Appl. Polym. Sci. 118, 2475–2481 (2010)

    Google Scholar 

  40. L. Liu, Z. Shen, S. Liang, M. Yi, X. Zhang, S. Ma, J. Mater. Sci. 49, 321–328 (2014)

    Article  Google Scholar 

  41. M.E. Uddin, R.K. Layek, H.K. Kim, N.H. Kim, D. Hui, J.H. Lee, Compos. B 90, 223–231 (2016)

    Article  Google Scholar 

  42. J. Xu, C.P. Wong, in Proceedings of International Symposium on Advanced Packing Materials: Processes, Properties and Interfaces, (Atlanta, 2004), pp. 158–170

  43. C. Zhang, R. Mason, G.C. Stevens, in Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, pp. 721–724 (2005)

  44. P. Murugaraj, D. Mainwarning, N. Mora-Huertas, J. Appl. Phys. 98, 054304 (2005)

    Article  Google Scholar 

  45. S. Singha, M.J. Thomas, IEEE Trans. Compon. Packag. Technol. 33, 373–385 (2010)

    Article  Google Scholar 

  46. H. Li, G. Liu, B. Liu, W. Chen, S. Chen, Mater. Lett. 61, 1507–1511 (2007)

    Article  Google Scholar 

  47. S. Sathish, S.B. Chandar, N. Manivannan, Iran. Polym. J. 24, 63–74 (2015)

    Article  Google Scholar 

  48. A. Mishra, M. Bajpai, J. Hazard. Mater. 118, 213–217 (2005)

    Article  Google Scholar 

  49. M. Farahmanddjou, N. Golabiyan, J. Ceram. Process. Res. 16, 237–240 (2015)

    Google Scholar 

  50. H.S. Kim, N.K. Park, T.J. Lee, M.H. Um, M. Kang, Adv. Mater. Sci. Eng. 2012, 920105–920110 (2012)

    Google Scholar 

  51. J. Wang, H. Jiang, N. Jiang, Thermochim. Acta 496, 136–142 (2009)

    Article  Google Scholar 

  52. G. Arthanareeswaran, P. Thanikairelan, K. Srinivasn, D. Mohan, M. Rajendran, Eur. Polym. J. 40, 2153–2159 (2004)

    Article  Google Scholar 

  53. G.M. Raghavendra, T. Jayaramudu, K. Varaprasad, R. Sadiku, S.S. Ray, K.M. Raju, Carbohydr Polym. 93, 553–560 (2013)

    Article  Google Scholar 

  54. B.K. Kim, Y.S. Oh, Y.M. Lee, L.K. Yoon, S. Lee, Polymer 41, 385–390 (2000)

    Article  Google Scholar 

  55. S.M. Pawde, K. Deshmukh, Polym. Eng. Sci. 49, 808–818 (2009)

    Article  Google Scholar 

  56. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, K. Chidambaram, Eur. Polym. J. 76, 14–27 (2016)

    Article  Google Scholar 

  57. J. Lu, K.-S. Moon, J. Xu, C.P. Wong, J. Mater. Chem. 16, 1543–1548 (2006)

    Article  Google Scholar 

  58. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, P.R. Bhagat, S.K.K. Pasha, A. Bhagat, R. Shirbhate, F. Telare, C. Lakhani, Polym. Plast. Technol. Eng. 55, 231–241 (2016)

    Article  Google Scholar 

  59. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, S.K.K. Pasha, M.A.A. AlMaadeed, K. Chidambaram, J. Polym. Res. 23, 159 (2016)

    Article  Google Scholar 

  60. K.K. Sadasivuni, D. Ponnamma, B. Kumar, M. Strankowski, R. Cardinaels, P. Moldenaers, S. Thomas, Y. Grohens, Compos. Sci. Technol. 104, 18–25 (2014)

    Article  Google Scholar 

  61. K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, R.R. Deshmukh, P.R. Bhagat, RSC Adv. 5, 61933–61945 (2015)

    Article  Google Scholar 

  62. K. Deshmukh, M.B. Ahamed, A.R. Polu, K.K. Sadasivuni, S.K.K. Pasha, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, K. Chidambaram, J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-5267-x

    Google Scholar 

  63. M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K. Pasha, Adv. Mater. Lett. (2016). doi:10.5185/amlett.2016.6555

    Google Scholar 

  64. F. He, S. Lau, H.L. Chen, J.T. Fan, Adv. Mater. 21, 710–715 (2009)

    Article  Google Scholar 

  65. V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, J.F. Scott, G.L. Sharma, J. Mater. Sci. 48, 2151–2157 (2013)

    Article  Google Scholar 

  66. L.Y. Xie, X.Y. Huang, C. Wu, P.K. Jiang, J. Mater. Chem. 21, 5897–5906 (2011)

    Article  Google Scholar 

  67. M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Int. J. Chem. Tech. Res. 5, 32–41 (2015)

    Google Scholar 

  68. S.M. Pawde, K. Deshmukh, J. Appl. Polym. Sci. 110, 2569–2578 (2008)

    Article  Google Scholar 

  69. G. Sui, B. Li, G. Bratzel, L. Baker, W.H. Zhong, X.P. Yang, Soft Matter 5, 3593–3598 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, Kalim Deshmukh would like to acknowledge the financial support from the management of B. S. Abdur Rahman University, Chennai - 600048, TN, India in terms of Junior Research Fellowship (JRF) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalim Deshmukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, K., Ahamed, M.B., Deshmukh, R.R. et al. Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci: Mater Electron 28, 973–986 (2017). https://doi.org/10.1007/s10854-016-5616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5616-9

Keywords

Navigation