Advertisement

Composition-tunable ternary CdS1−xSex/graphene composites with enhanced photocurrent response

  • Yun Lei
  • Yue He
  • Chengyi Fang
Article
  • 116 Downloads

Abstract

CdS1−xSex/graphene composites were prepared by a solvothermal process using cadmium acetate as Cd precursors, sulfourea as S precursors and selenosulfate as Se precursors. The value of x could be adjusted by controlling the molar ratio of S and Se precursors, and the products were characterized by X-ray diffraction, scanning electron microscope and further evaluated by transient photocurrent responses and electrochemical impedance spectroscopy. Compared with pure CdS1−xSex, CdS1−xSex/graphene composites exhibit enhanced photocurrent response and decreased electron-transfer resistance due to the presence of graphene. The photocurrent of CdS1−xSex/graphene increases with the increase of the Se/S ratio and reaches the maximum at the Se/S ratio of 0.75:0.25. The effect of graphene on the photocurrent response was explored and a higher photocurrent density can be observed for 1 % CdS1−xSex/graphene.

Keywords

Electrochemical Impedance Spectroscopy Photocurrent Density Cadmium Acetate Photocurrent Response Graphene Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was supported by National Natural Science Foundation of China No. 51204129.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest to this work.

References

  1. 1.
    S.R. Deo, A.K. Singh, L. Deshmukh, N.P. Singh, M.P. Aleksandrova, J. Fluoresc. 26, 459 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Zuala, P. Agarwal, Mater. Chem. Phys. 162, 813 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Song, M. Wang, J. Deng, Z. Yang, C. Ran, X. Zhang, X. Yao, ACS Appl. Mater. Interfaces 5, 5139 (2013)CrossRefGoogle Scholar
  4. 4.
    L.A. Swafford, L.A. Weigand, M.J. Bowers, J.R. McBride, J.L. Rapaport, T.L. Watt, S.K. Dixit, L.C. Feldman, S.J. Rosenthal, J. Am. Chem. Soc. 128, 12299 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Dai, P.X. Zhou, J.F. Lu, H.G. Zheng, J.Y. Guo, F. Wang, N. Gu, C.X. Xu, Nanoscale 8, 804 (2016)CrossRefGoogle Scholar
  6. 6.
    A.A. Akl, A.S. Hassanien, Superlattice. Microstruct. 85, 67 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Zhang, F. Liao, Y. Zhu, J.P. Sun, M.W. Shao, Sens. Actuators B-Chem. 215, 497 (2015)CrossRefGoogle Scholar
  8. 8.
    P.S. Maiti, M.B. Sadan, RSC Adv. 5, 100834 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Maity, T. Debnath, H.N. Ghosh, J. Phys. Chem. C 119, 10785 (2015)CrossRefGoogle Scholar
  10. 10.
    L.B. Yu, X.F. Ren, Z.R. Yang, Y.Q. Han, Z. Li, J. Mater. Sci. Mater. Electron. 27, 7150 (2016)CrossRefGoogle Scholar
  11. 11.
    Y.H. An, Z.P. Wu, X.L. Chu, D.Y. Guo, X.C. Guo, L.H. Li, P.G. Li, H. Tang, W.H. Tang, J. Nanopart. Res. 17, 119 (2015)CrossRefGoogle Scholar
  12. 12.
    C. Unlu, G.U. Tosun, S. Sevim, S. Ozcelik, J. Mater. Chem. C 1, 3026 (2013)CrossRefGoogle Scholar
  13. 13.
    Z.H. Chen, W.Q. Peng, K. Zhang, J. Zhang, M. Yanagida, L.Y. Han, Nanoscale 4, 7690 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Zou, D.S. Li, D. Yang, Nanoscale Res. Lett. 5, 966 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Yun, H. Lee, W.E. Lee, H.S. Park, Fuel 174, 36 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Tite, V. Barnier, C. Donnet, A.S. Loir, S. Reynaud, J.Y. Michalon, F. Vocanson, F. Garrelie, Thin Solid Films 604, 74 (2016)CrossRefGoogle Scholar
  17. 17.
    O.D. Omelchenko, O.L. Gribkova, A.R. Tameev, A.V. Vannikov, Tech. Phys. Lett. 40, 807 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Lei, F.F. Chen, R. Li, J. Xu, Appl. Surf. Sci. 308, 206 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Lei, F.F. Chen, J. Xu, Y. He, J. Mater. Sci. Mater. Electron. 26, 7200 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Lei, J. Xu, R. Li, F.F. Chen, Ceram. Int. 41, 3158 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Lei, R. Li, F.F. Chen, J. Xu, J. Mater. Sci. Mater. Electron. 25, 3057 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Lei, C.Y. Fang, J. Xu, Y. He, Ceram. Int. 42, 5326 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Lei, Y. He, R. Li, F.F. Chen, J. Xu, Ceram. Int. 41, 10835 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Resources and Environmental EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations